Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

  • 166 Accesses

Abstract

This chapter closes the book with some considerations of future prospects of the numerical solution of the Euler equations. It is of course not only academic interest in Euler solutions to do so. It is also and especially the use of Euler solutions in industrial design work. The development of Navier-Stokes solvers is very welcome, but those do not meet every demand in design work. Because of cost considerations in aerodynamic design work, always a whole palette of modelization levels and hence computation methods will be employed. There the cheapest method will always be selected which just gives the requested answer with the desired accuracy. The answers sought are very different in the different stages of a design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pulliam, T.H.: “Artificial Dissipation Models for the Euler Equations”. AIAA J., V01. 24, No. 12, 1986, pp. 1931–1940.

    Article  MATH  Google Scholar 

  2. Peaceman, D.W., Rachford, H.H., Jr.: “The Numerical Solution of Parabolic and Elliptic Differential Equations”. SIAM Journal of Applied Mathematics, Vol. 3, 1955, pp. 28–41.

    Article  MATH  MathSciNet  Google Scholar 

  3. Yanenko, N.N.: “The Method of Fractional Steps for Numerical Solution of the Problems of Mechanics of Continuous Media”. Fluid Dynamics Transactions, Vol. 4, 1969, pp. 135–147. Institute of Fundamental Technical Research, Polish Academy of Science, Warsaw.

    Google Scholar 

  4. Samaskii, A.A.: “Local One Dimensional Difference Schemes for Multidimensional Hyperbolic Equations in an Arbirary Region”. Vycisl. Mat. i Mat. Fiz., 4 21–35, 1964.

    Google Scholar 

  5. MacCormack, R.W., Paullay, A.J.: “Computational Efficiency Achieved by Time Splitting of Finite Difference Operators”. AIAA-Paper 72–154, 1972.

    Google Scholar 

  6. Hirsch, C., Lacor, C., Deconinck, H.: “Convection Algorithms Based on a Diagonalization Procedure for the Multidimensional Euler Equations”. AIAA-Paper 87–1163, 1987.

    Google Scholar 

  7. Roe, P.L.: “Discrete Models for the Numerical Analysis of Time Dependent Multidimensional Gas Dynamics”. J. Comp. Phys., Vol. 63, 1986, pp. 458–476.

    Article  MATH  MathSciNet  Google Scholar 

  8. Powell, K.G., van Leer, B.: “A Genuinely Multidimensional Upwind Cell-Vertex Scheme for the Euler Equations”. AIAA-Paper 89–0095, 1989.

    Google Scholar 

  9. Jameson, A., Baker, T.J.: “Improvements to the Aircraft Euler Method”. AIAA-Paper 87–0452, 1987.

    Google Scholar 

  10. Mavriplis, D., Jameson, A.: “Multigrid Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes”. AIAA-Paper 87–0353, 1987.

    Google Scholar 

  11. Baker, T.J.: “ Three Dimensional Mesh Generation by Triangulation of Arbitrary Point Sets”. AIAA Paper 87–1124, 1987.

    Google Scholar 

  12. Löhner, R., Morgan, K., Zienkiewicz, O.C.: “The Solution of Non-Linear Hyperbolic Equation Systems by the Finite Element Method”. Intl. J. Num. Meth. Fluids, Vol. 4, 1984, pp. 1043–1063.

    Article  MATH  Google Scholar 

  13. Morgan, K., Peraire, J.: “Finite-Element Methods for Compressible Flows”. VKI Lecture Notes, Brussels, 1987.

    Google Scholar 

  14. Löhner, R.: “Adaptive Remeshing for Transient Problems with Moving Bodies”. AIAA-Paper 88–3737, 1988.

    Google Scholar 

  15. Shapiro, R.A., Murman, E.M.: “Adaptive Finite Element Methods for the Euler Equations”. AIAA-Paper 88–0034, 1988.

    Google Scholar 

  16. Shapiro, R.A.: “Adaptive Finite Element Solution Algorithm for the Euler Equations”. NNFM 32, Vieweg, Braunschweig/-Wiesbaden, 1991.

    Google Scholar 

  17. Kallinderis, J., Baron, J.R.: “Adaptation Methods for a New Navier Stokes Algorithm”. AIAA-Paper 87–1167, 1987.

    Google Scholar 

  18. Jameson, A.: “Computational Transonics”. Comm. Pure Appl. Math., Vol. XLI, 1988, pp. 507–549.

    Google Scholar 

  19. Brackbill, J.U., Saltzmann, J.S.: “Adaptive Zoning for Singular Problems in Two Dimensions”. J. of Computational Physics, Vol. 46, 1982, pp. 342–368.

    Article  MATH  Google Scholar 

  20. Kim, H.J., Thompson, J.F.: “Three-Dimensional Adaptive Grid Generation on a Composite Block Grid”. AIAA-Paper 88–0311, 1988.

    Google Scholar 

  21. Reggio, M., Trepanier, J.-Y., Camarero, R.: “ A Composite Grid Approach for the Euler Equations”. Int. J. for Numerical Methods in Fluids, Vol. 10, 1990, pp. 161–178.

    Article  MATH  Google Scholar 

  22. Sengupta, S., Häuser, J., Eisemann, P.R., Thompson, J.F. (eds.): “Numerical Grid Generation in Computational Fluid Mechanics ‘88”. Pineridge Press, Swansea, 1988.

    Google Scholar 

  23. Hankey, W.L.: “ICFD-Interdisciplinary Computational Fluid Dynamics”. AIAA-Paper 85–1522, 1985.

    Google Scholar 

  24. Hirschel, E.H.: “Super Computers Today: Sufficient for Aircraft Design? — Experiences and Demands”. In: H.W. Meuer (ed.): Super-Computer ‘88. Hanser, München/Wien, 1988, pp. 110–150.

    Google Scholar 

  25. Drougge, G.: “The Wave Drag of Delta Wings at Supersonic Speeds: a Recent Study”. Aeronautical Journal, August/September 1990, pp. 225–230.

    Google Scholar 

  26. Jameson, A.: “Aerodynamic Design via Control Theory”. AGARD–CP–463, 1990, pp. 22–1–22–32.

    Google Scholar 

  27. Shankar, V., Hall, W. Mohammadian, A.H.: “A CFD-based Finite Volume Procedure for Computational Electromagnetics-Interdisciplinary Applications of CFD Methods”. AIAA-Paper 89–1987-CP, 1989.

    Google Scholar 

  28. Goorjian, P.M.: “Algorithm Development for Maxwell’s Equations for Computational Electromagnetism”. AIAA-Paper 90–0251, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Eberle, A., Rizzi, A., Hirschel, E.H. (1992). Future Prospects. In: Numerical Solutions of the Euler Equations for Steady Flow Problems. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-06831-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-06831-0_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07634-4

  • Online ISBN: 978-3-663-06831-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics