Skip to main content

On the (Internal) Symmetry Groups of Linear Dynamical Systems

  • Chapter

Part of the book series: Vieweg Tracts in Pure and Applied Physics ((VTPAP,volume 4))

Abstract

A time invariant linear dynamical system is a set of equations

$$\begin{array}{*{20}{c}} {{\rm{\dot x = Fx + Gu}}}\\ {{\rm{y = Hx}}}\\ {({\rm{continoustime}})} \end{array}(\Sigma )\begin{array}{*{20}{c}} {{\rm{x}}({\rm{t + 1}}){\rm{ = Fx}}({\rm{t}}){\rm{ + Gu}}({\rm{t}})}\\ {{\rm{y}}({\rm{t}}){\rm{ = Hx}}({\rm{t}})}\\ {({\rm{discretetime}})} \end{array}$$

where x ∈ X = IRn, u ∈ U = IRm, y ∈ Y = IRp and where F, G, H are matrices with coefficients in IR of the dimensions n × n, n × m, p × n respectively. We speak then of a system of dimension n, dim(∑) = n, with m inputs and p outputs. Of cource the discrete time case also makes sense over any field k, (instead of IR). The spaces X, U, Y are respectively called state space, input space and output space. The usual picture is a “black box”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casti, J. L., Dynamical Systems and their Applications: Linear Theory, Acad. Pr., 1977.

    Google Scholar 

  2. Denham, M. J., Canonical Forms for the Identification of Multivariable Linear Systems, IEEE Trans. Automatic Control 19, 6 (1974), 646–656.

    Article  Google Scholar 

  3. Hazewinkel, M., Kalman, R. E., Moduli and Canonical Forms for Linear Dynamical Systems, Report 7504, Econometric Institute, Erasmus Univ. Rotterdam, 1975.

    Google Scholar 

  4. Hazewinkel, M., Kalman, R. E., On Invariants, Canonical Forms and Moduli for Linear, Constant, Finite Dimensional, Dynamical Systems. In: Proc. CNR-CISM Symp. Algebraic System Theory (Udine 1975). Lect. Notes Economics and Math Systems 131 (1976), Springer, 48–60.

    Google Scholar 

  5. Hazewinkel, M., Moduli and Canonical Forms for Linear Dynamical Systems II: The Topological Case, J. Math. System Theory 10 (1977), 363–385.

    Article  Google Scholar 

  6. Hazewinkel, M., Moduli and Canonical Forms of Linear Synamical Systems III: The Algebraic-Geometric Case. In: C. Martin, R. Hermann (eds), The 1976 AMES Research Centre (NASA) Conf. on Geometric Control, Math. Sci. Press, 1977, 291–360.

    Google Scholar 

  7. Hazewinkel, M., Degenerating Families of Linear Dynamical Systems I: Proc. 1977 IEEE Conf. on Decision and Control (New Orleans), 258–264.

    Google Scholar 

  8. Hazewinkel, M., Invariants, Moduli and Canonical Forms for Linear Time-varying Dynamical Systems, Ricerche di Automatica 9 (1979), to appear.

    Google Scholar 

  9. Kalman, R. E., Lectures on Controllability and Observability. In: G. Evangilisti (ed), Controllability and Observability (CIME, 1968), Edizione Cremonese, 1969, 1–151.

    Google Scholar 

  10. Kalman, R. E., Falb, P. L., Arbib, M. A., Topics in Mathematical Systems Theory, McGraw-Hill, 1969.

    Google Scholar 

  11. Kalman, R. E., Kronecker Invariants and Feedback. In: L. Weiss (ed), Ordinary Differential Equations ( 1971, NRL-MRC conference ), Acad. Press, 1972, 459–471.

    Google Scholar 

  12. Kar-Keung, Young, D., Kokotovic, P. V., Utkin, V. I., A Singular Perturbation Analysis of highgain Feedback Systems. IEEE Trans. Automatic Control 22, 6 (1977), 931–938.

    Article  Google Scholar 

  13. Martin, C., Hermann, R., Applications of Algebraic Geometry to Systems Theory: The McMillan degree and Kronecker indices of transfer functions as Topological and Holomorphic System Invariants, SIAM J. Control and Opt. 16 (1978), 743–755.

    Article  Google Scholar 

  14. Rosenbrock, H. H., State space and Multivariable Theory, Nelson, 1970.

    Google Scholar 

  15. Willems, J. C., Glover, K., Parametrizations of Linear Dynamical Systems: Canonical Forms and Identifiability, IEEE Trans. Automatic Control 19, 6 (1974), 640–646.

    Article  Google Scholar 

  16. Wilkinson, J. H., Golub, G. H., Ill-conditioned Eigensystems and Computation of the Jordan Canonical Form, SIAM Review 18, 4 (1976), 578–619.

    Article  Google Scholar 

  17. Wolowich, W. A., Linear Multivariable Systems, Springer, 1974.

    Book  Google Scholar 

  18. Wonham, W. Murray, Linear Multivariable Control. A geometric Approach, Led. Notes Economics and Math. Systems 101, Springer, 1974.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Hazewinkel, M. (1980). On the (Internal) Symmetry Groups of Linear Dynamical Systems. In: Kramer, P., Dal Cin, M. (eds) Groups, Systems and Many-Body Physics. Vieweg Tracts in Pure and Applied Physics, vol 4. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-06825-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-06825-9_9

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08444-8

  • Online ISBN: 978-3-663-06825-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics