Skip to main content

Dynamical Groups for the Motion of Relativistic Composite Systems

  • Chapter
Groups, Systems and Many-Body Physics

Part of the book series: Vieweg Tracts in Pure and Applied Physics ((VTPAP,volume 4))

Abstract

The relativistic quantum theory of composite systems is still largely an open problem. In quantum field theory, even for a two-body system, the method that has been studied most extensively, the Bethe-Salpeter equation, gives useful results only after drastic, mostly nonrelativistic, approximations. The best way to understand the bound-state problems still seems to be via some effective potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A) Books

  • Wybourne, B. G., Classical Groups for Physicists (John Wiley, New York, 1974), p. 414.

    Google Scholar 

  • Barut, A. O., Dynamical Groups and Generalized Symmetries in Quantum Theory (University of Canterbury Press, Christchurch, N. Z., 1972), p. 98.

    Google Scholar 

  • Barut, A. O. and Raczka, R., Theory of Group Representations and Applications (Polish Scientific Publisher, Warsaw, 1977), p. 717.

    Google Scholar 

B) Quoted References

  1. For more detailed discussion on these points and the internal structure of hadrons, cf. Barut, A. O., Review of Hadron Symmetries: Multiplets, Supermultiplets, Infinite Multiplets, in Proceedings of the XVth International High Energy Physics Conference, Naukova Dumka Puhl., Kiew, 1972.

    Google Scholar 

  2. Barut, A. O. and Haugen, R., The theory of Conformally Invariant Mass, Ann. of Phys. 71, 519–541 (1970); Nuovo Cim. 18A 495–510; 511–531 (1973).

    Google Scholar 

  3. Wigner, E. P., Unitary Representations of the Inhomogeneous Lorentz Group, Ann. Math. 40, 149–204 (1939).

    Google Scholar 

  4. Barut, A. O., Reformulation of the Dirac Theory of the Electron, Phys. Rev. Lett. 20, 893 (1968).

    Google Scholar 

  5. Gelfand, I. M. and Yaglom, A. M., General Lorentz Invariant Equations and Infinite-Dimensional Representations of the Lorentz Group, Z. Eksp. Theor. Fiz. 8, 703–733 (1948).

    Google Scholar 

  6. Barut, A. O. and Bornzin, G., Unification of External Conformal Symmetry Group and the Internal Dynamical Group, J. Math. Phys. 15, 1000–1006 (1974).

    Google Scholar 

  7. Barut, A. O., Conformal Group -*Schrödinger Group Dynamical Group, Heiv. Phys. Acta. 46, 496–503 (1973).

    Google Scholar 

  8. Barut, A. O. and Bornzin, G., SO(4, 2) Formulation of the Symmetry Breaking in Relativistic Kepler Problem with or without Magnetic Charges, J. Math. Phys. 12, 841–846 (1971).

    Google Scholar 

  9. Gambardello, P. J., Exact results in quantum many-body systems of interacting particles in many dimensions with SU(1, 1) on the dynamical group, J. Math. Phys. 16, 1172–1187 (1975).

    Google Scholar 

  10. Barut, A. O., to be published.

    Google Scholar 

  11. Cordero, P. and Hoffman, S., “Algebraic solution of a short-range potential problem,” Lett. N. C. 4, 1123 (1970).

    Google Scholar 

  12. Barut, A. O., Girardello, L. and Wyss, W., Nonlinear (n + 1)-Symmetric Field Theories, HeIv. Phys. Acta. 49, 807–813 (1976).

    Google Scholar 

  13. Barut, A. O. and Rasmussen, W., “H-atom as a relativistic Elementary Particle I and II,” J. Phys. B6, 1695–1712; 1713–1740.

    Google Scholar 

  14. Theory of Group Representations and Applications,“ c.e.a., Ch. 21.

    Google Scholar 

  15. Barut, A. O., Corrigan, D. and Kleinert, H., Derivation of Mass Spectrum and Magnetic Moments from Current Conservation in Relativistic 0(3, 2) and 0(4, 2)-Theories, Phys. Rev. 167, 15271534 (1968).

    Google Scholar 

  16. Barut, A. O. and Duru, H., Relativistic Composite Systems and Minimal Coupling, Phys. Rev. 10, 3448–3454 (1974).

    Google Scholar 

  17. Barut, A. O., “Dilatation of Nonrelativistic Wavefunctions into Relativistic Form,” J. Phys. B8, L205–208 (1975).

    Google Scholar 

  18. Barut, A. O. and Nagel, J., Interpretation of Space-Like Solutions of Infinite-Component Wave Equations and Grodsky-Streater “No-Go”, Theorem, J. Phys. A10,1233–1242 (1977).

    Google Scholar 

  19. Barut, A. O., Space-Like States in Relativistic Quantum Theory, in Proc. Erice Conference 1976, edited by E. Recami (North Holland, 1978).

    Google Scholar 

  20. Barut, A. O. and Böhm, A., Reduction of a Class of 0(4, 2) Representations with Respect to SO(4, 1) and SO(3, 2), J. Math. Phys. 11, 2938–2945 (1970).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Barut, A.O. (1980). Dynamical Groups for the Motion of Relativistic Composite Systems. In: Kramer, P., Dal Cin, M. (eds) Groups, Systems and Many-Body Physics. Vieweg Tracts in Pure and Applied Physics, vol 4. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-06825-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-06825-9_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08444-8

  • Online ISBN: 978-3-663-06825-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics