Skip to main content

Optoacoustic and Photothermal Imaging and Microscopy

  • Chapter
Photoacoustic Effect Principles and Applications
  • 301 Accesses

Abstract

Modulated radiation shining on an absorbing sample causes a temperature modulation which can be detected in different ways. The classical method is based on the gas pressure modulation when the sample is kept in a gas-filled cell One One can also detect the modulated thermal expansion of the solid sample itself by using piezoceramic material or even a strain gauge attached to it 2–4. While these are optoacoustic (also called photo-acoustic) methods5,6 in photothermal detection the temperature is monitored via the modulation of infrared thermal emission correlated with it 7, as is described by P.E. Nordal and S.O. Kanstad in this book. It is true remote sensing like the “mirage effect” where the change of sample temperature causes deflection of a monitoring beam of light 8 (see article by D. Fournier and A.C. Boccara in this book).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Bell, Am. J. Sci. 20, 305 (1880)

    Google Scholar 

  2. A. Hordvik and H. Schlossberg, Appl. Opt. 16, 101 (1977)

    Article  ADS  Google Scholar 

  3. M.M. Farrow, R.K. Burnham, M. Auzanneau, S.L. Olsen, N. Purdie, and E.M. Eyring, Appl. Opt. 17, 1093 (1978)

    Article  ADS  Google Scholar 

  4. G. Busse and S. Perkowitz, Int. J. of Infrared and Submm. Waves 1, 139 (1980)

    Article  ADS  Google Scholar 

  5. Yoh-Han Pao, “Optoacoustic Spectroscopy and Detection”, Academic Press (1977)

    Google Scholar 

  6. A. Rosencwaig, “Photoacoustics and Photoacoustic Spectroscopy”, John Wiley & Sons (1980)

    Google Scholar 

  7. P.E. Nordal and S.O. Kanstad, Physica Scripta 20, 659 (1979)

    Article  ADS  Google Scholar 

  8. A.C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980)

    Article  ADS  Google Scholar 

  9. J.G. Parker, Appl. Opt. 12, 2974 (1973)

    Article  ADS  Google Scholar 

  10. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976)

    Article  ADS  Google Scholar 

  11. F.A. McDonald and G.C. Wetsel Jr., J. Appl. Phys. 49, 231. 3 (1978)

    Google Scholar 

  12. Y.H. Wong, R.L. Thomas, and G.F. Hawkins, Appl. Phys. Lett. 32, 538 (1978)

    Article  ADS  Google Scholar 

  13. G. Busse in “Topical Meeting on Photoacoustic Spectroscopy”, Optical Soc. of America, Ames/Iowa, August 1979

    Google Scholar 

  14. A. Rosencwaig, Am. Lab. 11, 39 (1979)

    Google Scholar 

  15. W.R. Harshbarger and M.B. Robin, Acc. Chem. Res. 6, 329 (1973)

    Article  Google Scholar 

  16. G. Busse and A. Ograbek, J. Appl. Phys. 51, 3576 (1980)

    Article  ADS  Google Scholar 

  17. G. Busse, Opt. Comm. 36, 441 (1981)

    Article  ADS  Google Scholar 

  18. A. Rosencwaig and G. Busse, Appl. Phys. Lett. 36, 725 (1980)

    Article  ADS  Google Scholar 

  19. G. Busse and A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980)

    Article  ADS  Google Scholar 

  20. G. Busse, IEEE Ultrasonics Symposium Proceedings, p. 622 (1980)

    Google Scholar 

  21. R.S. Quimby and W.M. Yen, Appl. Phys. Lett. 35, 43 (1979)

    Article  ADS  Google Scholar 

  22. Y.H. Wong, R.L. Thomas, and J.J. Pouch, Appl. Phys. Lett. 35, 368 (1979)

    Article  ADS  Google Scholar 

  23. M. Luukkala and S.G. Askerov, Electronics Lett. 16, 84 (1980)

    Article  Google Scholar 

  24. G. Busse, Optics and Laser Techn. 12, 149 (1980)

    Article  ADS  Google Scholar 

  25. G. Busse, Appl. Phys. Lett. 35, 759 (1979)

    Google Scholar 

  26. E.A. Ash (ed.), “Scanned Image Microscopy”, Academic Press (1980)

    Google Scholar 

  27. B. Lieder, Diplomarbeit Hochschule der Bundeswehr München (1980)

    Google Scholar 

  28. A. Lehto, J. Jaarinen, T. Tiusanen, M. Jokinen, and M. Luukkala (to be published)

    Google Scholar 

  29. M.A. Jangstrom, Phil. Mag. 25, 180 (1863)

    Google Scholar 

  30. M.J. Adams and G.F. Kirkbright, Analyst 102, 281 (1977)

    Article  ADS  Google Scholar 

  31. G. Busse, Infrared Physics 20, 419 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edgar Lüscher Peter Korpiun Hans-Jürgen Coufal Rainer Tilgner

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Busse, G. (1984). Optoacoustic and Photothermal Imaging and Microscopy. In: Lüscher, E., Korpiun, P., Coufal, HJ., Tilgner, R. (eds) Photoacoustic Effect Principles and Applications. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-06820-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-06820-4_26

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08573-5

  • Online ISBN: 978-3-663-06820-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics