Skip to main content

Part of the book series: Nordrhein-Westfälische Akademie der Wissenschaften ((NWAWV))

  • 41 Accesses

Zusammenfassung

Weiße Flecken im Atlas waren noch vor gar nicht langer Zeit der Magnet, der geographische Entdecker anzog, mögen sie ethnologisch, geologisch oder biologisch orientiert gewesen sein. Ihre Berichte gehörten zu der beliebtesten Volkslektüre. Manche von uns lesen sie heute noch mit einem geheimen Bedauern, nicht mehr in diese Zeit zu gehören. Wenigen aber fällt auf, daß uns der größte Teil der Erdoberfläche noch unbekannt ist und auf dem Globus weiß einzutragen wäre, nämlich der Meeresboden. Tatsächlich sind noch nicht die notwendigen Instrumente entwickelt worden, um die Meerwasserschicht über dem größten Teil der Erdoberfläche für genauere Beobachtungen optisch oder elektronisch zu durchdringen. Akustische Messungen liefern nur topologische Überblicke. Photographisch kennen wir einen weitaus größeren Teil der Mondoberfläche als von unserer eigenen Erde. Nur Momentaufnahmen sind von winzigen Abschnitten der Tiefsee gemacht worden, die sie als eine Wüste mit einer höchst spärlichen Tierwelt erscheinen lassen.

“The internal heat of a planet, mostly of radioactive origin, in theory would provide an alternative to incoming radiation though we have little precedent as to how an organism could use it.”

Hutchinson 1965

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Arp A. J., J. J. Childress: Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219, 295–297 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Arp A. J., J. J. Childress, C. R. Fisher: Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiol. Zool. 57, 648–662 (1984).

    CAS  Google Scholar 

  • Ballard R. D., J. F. Grassle: Return to oases of the deep. Nat. Geograph. 156, 689–703 (1979).

    Google Scholar 

  • Ballard R. D., T. van Andel: Project FAMOUS: Morphology and tectonics of the inner rift valley at 36°50’N on the Mid-Atlantic Ridge. Geol. Soc. Amer. Bull. 88, 507–530 (1977).

    Article  Google Scholar 

  • Belkin S., C. O. Wirsen, H. W. Jannasch: A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl. Environ. Microbiol. 51, 1180–1185 (1986).

    PubMed  CAS  Google Scholar 

  • Belkin S., C. O. Wirsen, H. W. Jannasch: Biological and abiological sulfur reduction at high temperatures. Appl. Environ. Microbiol 49, 1057–1061 (1985).

    PubMed  CAS  Google Scholar 

  • Boss K. J., R. D. Turner: The giant white clam from the Galapagos Rift, Calyptogena magnifica, species novum. Malacologia 20: 161–194 (1980).

    Google Scholar 

  • Brock T. D., ed.: Thermophilic microorganisms and life at high temperatures. Springer-Verlag, New York 1978.

    Google Scholar 

  • Burggraf S., H. W. Jannasch, B. Nicolaus, K. O. Stetter: Archaeoglo bus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. System. Appl. Microbiol. 13, 24–28 (1990).

    Article  Google Scholar 

  • Cavanaugh, C. M.: Symbiotic chemotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 302, 58–61 (1983).

    Article  CAS  Google Scholar 

  • Cavanaugh C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, J. B. Waterbury: Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213, 340–342 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Childress J. J., H. Felbeck, G. N. Somero: Symbiosis in the deep sea. Sci. Amer. 256, 115–120 (1987).

    Article  Google Scholar 

  • Childress J. J., C. R. Fisher, J. M. Brooks, M. C. Kennicut, R. Bridigare, A. E. Anderson: A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233, 1306–1308 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Corliss J. B., J. Dymond, L. I. Gordon, J. M. Edmond, R. P. von Herzen, R. D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, T. H. van Andel: Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Edmond J. M., K. L. Von Damm: Hot springs on the ocean floor. Scientific American 248, 78–93 (1983).

    Article  CAS  Google Scholar 

  • Edmond J. M., K. L. Von Damm: Chemistry of ridge crest hot springs. Proc. Biol. Soc., Washington 6, 43–47 (1985).

    Google Scholar 

  • Edmond J. M., K. L. Von Damm, R. E. McDuff, C. I. Measures: Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297, 187–191 (1982).

    Article  CAS  Google Scholar 

  • Enright J. T., W. A. Newman, R. R. Hessler, J. A. McGowan: Deep-ocean hydrothermal vent communities. Nature 289, 219–221 (1981).

    Article  Google Scholar 

  • Felbeck H.: Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213, 336–338 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Felbeck H., G. N. Somero, J. J. Childress: Biochemical interactions between molluscs and their algal and bacterial symbionts. In: The mollusca, vol. 2. (Hochacka P. W., ed) pp. 331–358, Academic Press, New York 1983.

    Google Scholar 

  • Fiala G., K. O. Stetter, H. W. Jannasch, T. A. Langworthy, J. Madon: Staphylothermus marinus sp nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria. System. Appl. Microbiol. 8, 106-. 113 (1986).

    Google Scholar 

  • Gaill F., S. Hunt: Tubes of deep sea hydrothermal vent worms Riftia pachyptila (Vestimentifera) and Alvinella popejana (Annelida). Mar. Ecol. Progr. Ser. 34, 267–274 (1986).

    Article  Google Scholar 

  • Grassle J. F.: The ecology of deep sea hydrothermal vent communities. Adv. Mar. Ecol. 23, 301–362 (1986).

    Article  Google Scholar 

  • Gunderson J., B. B. Jorgensen, E. Larsen, H. W. Jannasch: Mats of giant sulfur bacteria in deep-sea sediments due to fluctuating hydrothermal flow. Nature 360, 454–456 (1992).

    Article  Google Scholar 

  • Holm N. G., ed.: Marine hydrothermal systems and the origin of life. In: Origins of life and evolution of the biosphere, Vol. 22. Kluwer Acad. Publ., Dordrecht 1992.

    Google Scholar 

  • Honjo S., S. J. Manganini: Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studied at 34 °N 21°W and 48 °N 21 °W. Deep-Sea Res. 40, 587–607 (1993).

    Article  CAS  Google Scholar 

  • Huber R, T. A. Langworthy, H. König, M. Thomm, C. R. Woese, U. B. Slytr, K. O. Stetter: Thermo-toga maritima, sp. nov., represents a new genus of extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324–333 (1986).

    Article  CAS  Google Scholar 

  • Hutchinson G.E.: The Ecological Theater and the Evolutionary Play. Yale University Press, New Haven 1965.

    Google Scholar 

  • Jannasch H. W.: Litho-autotrophically sustained ecosystems in the deep sea. In: Biology of autotrophic bacteria. (Schlegel H. G., B. Bowien, eds.) pp. 147–166, Sci. Tech. Publ., Madison, WI. 1989.

    Google Scholar 

  • Jannasch H.W.: Microbial interactions with hydrothermal fluids. Geophys. Monogr. Ser., Amer. Geophys. Union Publ., Washington 1994 (im Druck).

    Google Scholar 

  • Jannasch H. W., C. O. Wirsen: Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29, 592–598 (1979).

    Article  CAS  Google Scholar 

  • Jannasch H. W., C. O. Wirsen: Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41, 528–538 (1981).

    PubMed  CAS  Google Scholar 

  • Jannasch H. W., M. J. Mottl: Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Jannasch H. W., C. O. Wirsen, S. J. Molyneaux, T. A. Langworthy: Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl. Environ. Microbiol. 54, 1203–1209 (1988).

    PubMed  CAS  Google Scholar 

  • Jannasch H. W., C. O. Wirsen, S. J. Molyneaux, T. A. Langworthy: Comparative physiological studies on hyperthermophilic archaea isolated from deep sea hydrothermal vents with emphasis on Pyrococcus Strain GB-D. Appl. Environ. Microbiol. 58, 3472–3481 (1992).

    PubMed  CAS  Google Scholar 

  • Jones M. L., ed.: Hydrothermal vents of the Eastern Pacific: an overview. Bull. Biol. Soc. Wash. 6. Infax Corp, Vienna, VA. 1985.

    Google Scholar 

  • Jones M. L.: Riftia pachyptila, nov. gen., nov. sp., the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proc. Biol. Soc. Wash. 93, 1295–1313 (1980).

    Google Scholar 

  • Jones M. L.: Observations on the vestimentiferan worm from the Galapagos Rift. Science 213, 333–336 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Jones W. J., J. A. Leigh, F. Meyer, C. R. Woese, R. S. Wolfe: Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254–261 (1983).

    Article  CAS  Google Scholar 

  • Jorgensen B. B., L. X. Zawacki, H. W. Jannasch: Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site. Deep-Sea Res. 37, 695–710 (1990).

    Article  Google Scholar 

  • Jorgensen B. B., M. F. Isaksen, H. W. Jannasch: Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258, 1756–1757 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Karl D. M., C. O. Wirsen, H. W. Jannasch: Deep-sea primary production at the Galapagos hydrothermal vents. Science 207, 1345–1347 (1980).

    Article  CAS  Google Scholar 

  • Kenk V. C., B. R. Wilson: A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift zone. Malacologia 26, 253–271 (1985).

    Google Scholar 

  • Kurr M., R. Huber, H. König, H. W. Jannasch, H. Fricke, A. Trincone, J. K. Kristiansson, K. O. Stet-ter: Metbanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens growing at 110°C. Arch. Microbiol. 156, 239–247 (1991).

    Article  CAS  Google Scholar 

  • Nelson D. C., C. O. Wirsen, H. W. Jannasch: Characterization of large autotrophic Beggiatoa abundant at hydrothermal vents of the Guaymas Basin. Appl. Environ. Microbiol. 55, 2909–2917 (1989).

    PubMed  CAS  Google Scholar 

  • Pfeffer W.: Pflanzenphysiologie, 2nd ed. W. Engelmann Verlag, Leipzig 1897.

    Google Scholar 

  • Pley Y., J. Schipka, A. Gambacorta, H. W. Jannasch, H. Fricke, R. Rachel, K. O. Stetter: Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Syst. Appl. Microbiol. 14, 255–263 (1991).

    Article  Google Scholar 

  • Rona P. A., K. Boström, L. Laubier, K. L. Smith: Hydrothermal processes at seafloor spreading centers. Plenum Press, New York 1983.

    Book  Google Scholar 

  • Ruby E. G., C. O. Wirsen, H. W. Jannasch: Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl. Environ. Microbiol. 42, 317–342 (1981).

    PubMed  CAS  Google Scholar 

  • Sanders H. L., R. R. Hessler, G. R. Hampson: An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep-Sea Res. 12, 845–867 (1972).

    Google Scholar 

  • Schmaljohann, R., H. J. Flügel: Methane-oxidizing bacteria in Pogonophora. Sarsia 72, 91–98 (1987).

    CAS  Google Scholar 

  • Stetter K. O., G. Gaag: Reduction of molecular sulphur by methanogenic bacteria. Nature 305, 309–311 (1983).

    Article  CAS  Google Scholar 

  • Talmont F., B. Fournet: Chemical composition of mucins from deep sea hydrothermal vent tubiculous annelid worms. Comp. Biochem. Physiol. 96B, 753–759 (1990).

    Google Scholar 

  • Tunnicliffe, V.: The biology of hydrothermal vents: ecology and evolution. Oceanogr. Mar. Biol. Annu. Rev. 29, 319–407 (1991).

    Google Scholar 

  • Van Dover C. L., B. Fry, J. F. Grassle, S. Humphris, P. A. Rona: Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar. Biol. 98, 209–216 (1988).

    Article  Google Scholar 

  • Van Dover, C. L., E. Z. Szuts, S. C. Chamberlain, J. R. Cann: A novel eye in `eyeless’ shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature 337, 458–460 (1989).

    Article  PubMed  Google Scholar 

  • Welhan J. A., H. Craig: Methane, hydrogen, and helium in hydrothermal fluids on the East Pacific Rise. In: Hydrothermal processes at sea floor spreading centers. (Rona P. A., K. Boström, L. Laubier, K. L. Smith, eds.) pp. 391–409, Plenum Press, New York, 1983.

    Chapter  Google Scholar 

  • Winogradsky S.: Ober Schwefelbakterien. Botan. Zeitg. 45, 489–507, 513–523, 529–539, 545–559, 569–576, 585–594, 606–610 (1887).

    Google Scholar 

  • Woese C. R., O. Kandler, M. L. Wheelis: Toward a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche, D. B. Botkin: The biota and the world carbon budget. Science 119, 141–146 (1978).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Jannasch, H.W. (1994). Neuartige Lebensformen an den Thermalquellen der Tiefsee. In: Neuartige Lebensformen an den Thermalquellen der Tiefsee. Nordrhein-Westfälische Akademie der Wissenschaften. VS Verlag für Sozialwissenschaften, Wiesbaden. https://doi.org/10.1007/978-3-663-06753-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-06753-5_1

  • Publisher Name: VS Verlag für Sozialwissenschaften, Wiesbaden

  • Print ISBN: 978-3-531-08409-1

  • Online ISBN: 978-3-663-06753-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics