Skip to main content

Weichmagnetische Keramiken

  • Chapter
Keramik

Zusammenfassung

Der Beginn der Forschung an Ferriten als magnetisches Material kann S. Hilpert [6] zugeordnet werden, der erste systematische Studien über die Magnetisierung von verschiedenen Ferritverbindungen machte. Bereits im Jahre 1915 bestimmten W.H. Bragg [45] und S. Nishikawa [46] unabhängig voneinander die Spinellstruktur von Ferroferrit (FeO • Fe2O3), aber es dauerte viele Jahre, bevor der Zusammenhang zwischen den Spinellferriten und dem Magnetisierungsverhalten bemerkt wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Wijn, H. P. J., “Some remarks on the history of ferrite research in Europe”, Proc. of Int. Conf. on Ferrites ICF 1, Y. Hoshino, S. Iida and M. Sugimoto editors. Univ. Park Press, Tokyo 1971, PXIX (1970)

    Google Scholar 

  2. Broese van Groenou, A., Bongers, P. F. and Stuyts, L. Magnetism, “Microstructure and Crystal chemistry of Spinel Ferrite”, Mater. Sci. Eng. 3, 317 (1968/69)

    Google Scholar 

  3. Slick, P. I., “Ferrites for non-microwave applications”, Ferromagnetic Materials, Vol. 2, E.P. Wohlfarth edditor, North-Holland, Publ. Co., 189 (1980)

    Chapter  Google Scholar 

  4. Roess, E., “Modern Ferrites for telecommunication”, J. Magn. Magn. Mats., 4, 86 (1977)

    Article  Google Scholar 

  5. Snelling, E. C., “Soft Ferrites: Properties and Applications”, second edition, Butterworths & Co. Ltd., London (1988)

    Google Scholar 

  6. Hilpert, S., “Genetische und konstitutive Zusammenhänge in den magnetischen Eigenschaften bei Ferriten und Eisenoxyden”, Ber. Deutsch. Chem., 42, 2248 (1909)

    Article  Google Scholar 

  7. Forestier, H., “Transformations magnetiques du sesquioxide de fer, de ses solutions solides, et des ses combinaisons ferromagné-tiques”, Ann. de Chim. Xe série. IX, 316 (1928)

    Google Scholar 

  8. Snoek, J. L., “New developments in ferromagnetic materials”, Elsevier Publishing Co., New York-Amsterdam (1947)

    Google Scholar 

  9. Smit, J. and Wijn, H. P.J., “Ferrites”, Philips Techn. Libr. (1959)

    Google Scholar 

  10. Perduyn, D. J. and Peloschek, H. P., “MnZn Ferrites with very high permeabilities”, Proc. Britt. Cer. Soc., 10, 263 (1968)

    Google Scholar 

  11. Stijntjes, Th. G. W., “Power ferrites: Performance and microstructure”, Int. Conf. Ferrites 5, session Al: Ferrites & processing 1 (Bombay 1989)

    Google Scholar 

  12. Büthker, C. and Harper, D. J., “Improved ferrite materials for high frequency power supplies”, Proc. HF Power Conversion, 186–194, (Virginia Beach, May 1986)

    Google Scholar 

  13. Stijntjes, Th. G. W. and Roelofsma, J. J., “Low-loss power ferrites for frequencies up to 500 kHz”, Adv. Cer., 16, 493 (1986)

    Google Scholar 

  14. Visser, E. G., Roelofsma, J. J. and Aaftink, G. J. M., “Domain wall loss and rotational loss in high frequency power ferrites”. Int. Conf. Ferrites 5, session B5: Power Ferrites (Bombay 1989)

    Google Scholar 

  15. Sano, T., Morita, A. and Matsukawa, A., “Power Ferrite has less than 400 mW/cm3 core loss at 1 MHz”, Power Electronics PCIM, 19, (July 1988)

    Google Scholar 

  16. Berger, M. H., Laval, J. Y., Kools, F. and Roelofsma, J. J., “Relation between boundary structure and hysteresis loss in MnZn ferrites for power applications”, Int. Conf. Ferrites 5, session B5: Power Ferrites (Bombay 1989)

    Google Scholar 

  17. Ishino, K. and Narumiya, Y., “Development of Magnetic Ferrites: Control and Application of losses”, Am. Cer. bull., 66, 1469 (1987)

    Google Scholar 

  18. Lyman, J., Power supplies: “Why makers are stepping up the pace in technology”, Electronics, 93 (Mai 14, 1987)

    Google Scholar 

  19. “Switching Power Supplies”, Electr. Components, 18 (January 1988)

    Google Scholar 

  20. Schaller, G. E., “Power Ferrites for 1 Megahertz (and up) Switcher”, High Freq. Power Conversion, 205 (April 1987)

    Google Scholar 

  21. Cattermole, P. and Cohn, Z., “New high frequency power ferrites for operation up to 2 MHz”, High Freq. Power Conversion Proc., 111 (May 1988)

    Google Scholar 

  22. Ochiai, T, and Okutani, K., “Ferrites for High-Frequency Power Supplies”, Intern. Conf. on Ferrites 4, Adv. Cer: 16, 447 (Kyoto 1984)

    Google Scholar 

  23. Visser E. G., “Analysis of the complex permeability of monocrystalline MnZnFeII Ferrite”, J. Magn. Magn. Mats. 42, 286 (1984)

    Article  Google Scholar 

  24. Estrov, A., “Power transformer design for 1 MHz resonant converter”, High Freq. Power Conversion Proc., 36 (May 1986)

    Google Scholar 

  25. Noordermeer, A. and Vantilt, M. M. E., “Wet chemical preparation and wet consolidation of ferrites”, Second International Conf. on Powder Processing Science, session: Power process and shape-forming (Berchtesgaden 1988)

    Google Scholar 

  26. Roess, E., “Modern techniques for modern ferrites”, Int. Conf. on Ferrites 5, session A8: Soft Materials II, (Bombay 1989)

    Google Scholar 

  27. Goldman, A., “Future trends in ferrite processing”, Int. Conf. on Ferrites 5, plenary session (Bombay 1989)

    Google Scholar 

  28. Snelling, E. C., “Some aspects of ferrite cores for H.F. power transformers”, Int. Conf. on ferrites 5, session B5: power ferrites (Bombay 1989)

    Google Scholar 

  29. G. Cryssis, “High frequency switching power supplie”, Mc Graw-Hill Block Company (New York 1984)

    Google Scholar 

  30. Tabisz, W. A. and Lee, F. C., “5 MHz, 50 W, Zero-Voltage Switched MultiResonant Converter”, Power Electronics PCIM, 12 (August 1987)

    Google Scholar 

  31. Kit Sum, K. and Herbert, E., “Novel low profile matrix transformers for high density power conversion”. Power Electronics PCIM, 102 (Sept. 1988)

    Google Scholar 

  32. Mullett, C. E. and Hiramatsu, R., “Recent advances in high frequency MAG” AMPS, High Freg. Power Conversion, 181 (April 1987)

    Google Scholar 

  33. “3R1 Ring Cores”, Philips Components technical information, nr. 9398 354 40011 (Oct. 1988)

    Google Scholar 

  34. Visser, E. G., “The stress dependence of the domain structure and the magnetic permeability of monocrystalline MnZnII ferrite”, J. Magn. and Magn. Mats. 26, 303–305 (1982)

    Article  Google Scholar 

  35. Visser, E. G., “Effect aniaxial tensile stress on the permeability of monocrystalline MnZnFeII ferrite”, J. Appl. Phys. 55, 2251 (1984)

    Article  Google Scholar 

  36. Ohta, K., “Magnetocrystalline anisotropy and magnetic permeability of MnZnFe ferrites”, J. Phys. Soc. Japan 18, 685 (1963)

    Article  Google Scholar 

  37. Stoppels, D. and Boonen, P. G. T., “The influence of the second-order magnetocrystalline anisotropy on the initial permeability of MnZn ferrous ferrite”, J. Magn. Magn. Mats. 19, 409 (1980)

    Article  Google Scholar 

  38. Ohta, K. and Kobayshi, N., “Magnetostriction constants of MnZnFe ferrites”, Jap. J. Appl. Phys. 3, 576 (1964)

    Article  Google Scholar 

  39. “3F3 Ferrite —at the core of advanced SMPS design”, Philips Components Technical Publication 282, code 9398 066 50011 (1989)

    Google Scholar 

  40. “3F4 Ferrite-cores for resonant high-frequency SMPS power converters operating above 1 MHz”, Philips Components Technical Publication, code 9398 080 000 11 (1991)

    Google Scholar 

  41. “EFD for low-profile DC-DC converters”, Philips Components Technical Publication 287, code 9398 069 7001 1 (1989)

    Google Scholar 

  42. Mulder, S. A., “Application note on the design of low profile high frequency transformers —a new tool in SMPS”, Philips Components 1990, code 9398 074 80011

    Google Scholar 

  43. Globus, A., J. Phys. Suppl. Cl (Proc. ICE3) pp. 1–15 (1977)

    Google Scholar 

  44. Johnson, M. T., and Visser, E. G., “A coherent model for the complex permeability in polycrystalline ferrites”, IEEE Trans. on Magn. 26, no. 5, 1987–1989 (1990)

    Article  Google Scholar 

  45. Bragg, W. H., “The structure of the Spinel Group of Crystals”, Phil. Mag. 5.6. 30 305 (1915)

    Google Scholar 

  46. Nishikawa, Proc. Tokyo Math. Phys. Soc. 8 199 (1915)

    Google Scholar 

  47. Forestier, H., “Les ferrites: relation entre leur structure cristalles et leurs propriétés magnétiques”, C.R. 192 842 (1931)

    Google Scholar 

  48. Forestier H. et Chaudron G., “Etude thermomagnetique de quelques ferrite”, C.R. 182 777 (1926)

    Google Scholar 

  49. Hilpert, S. und Wille, H., “Zusammenhänge zwischen Ferromagnetismus und Aufbau der Ferrite”. Z. Physik, Chemie B 18 291 (1932)

    Google Scholar 

  50. L. Néel, “Propriétés magnétiques des ferrites: Ferrimagnétisme at Antiferromagnétisme”, Ann. de Phy. 3 137–198 (1948)

    Google Scholar 

  51. Six, W., “Some Applications of ferroxcube”, Philips Techn. Rev. 13 [11] 301336 (1952)

    Google Scholar 

  52. Takei, T., J. Electrochem. Japan 5 411 (1937)

    Google Scholar 

  53. Takei, T., J. Electr. Soc. Japan 59 274 (1939)

    Google Scholar 

  54. Paulus, M. and Guillaud, Ch. J. Phys. Soc. Japan 17 Suppl. B-1 632 (1962)

    Google Scholar 

  55. Franken, P. and van Doveren, H., “Determination of the grain boundary composition of soft ferrites by Auger electron spectroscopy”, Ber. Dt. Keram. Ges. 55 287 (1978)

    Google Scholar 

  56. Nomura, T., Okutanie, K., Kitagawa, T. and Ochiai, T., “Sintering of MnZn ferrites for power materials”, Fall meeting Am. Cer. Soc. Sept. 1982 p. 57-BE-82F

    Google Scholar 

  57. Gorter, E. W. and Schulkes, J. A., “Reversal of Spontaneous Magnetisation as a Function of Temperature in LiFeO Spinels”. Phys. Rev. 90, 487–488 (1953)

    Article  Google Scholar 

  58. Roess, E, “Magnetic Properties and Microstructure of High- Permeability MnZn-ferrites”. Proc. of Int. Conf. on Ferrites ICF, Kyoto 1970, Y. Hoshino, S. Iida and M. Sugimoto editors, Univ. Park Press, Tokyo 1971, p204–209

    Google Scholar 

  59. Takada, T. and Kiyama, M., “Preparation of Ferrites by wet method”, Proc. of Int. Conf. on Ferrites ICF1, Kyoto 1970, Y. Hoshino, S. Iida and M. Sugimoto editors, Univ. Park Press, Tokyo 1971, p69–71

    Google Scholar 

  60. Akashi, T., Sugano, I, Kennoku, Y, Shuisma, Y. and Tsuji, T., “Low-Loss and High-Stability Mn-Zn-Ferrites”, Proc. of Int. Conf. on Ferrites ICF1, Kyoto 1970, Y. Hoshino, S. Iida and M. Sugimoto editors, Univ. Park Press, Tokyo 1971, p183–186

    Google Scholar 

  61. Takei T., “Research and Development of ferrites in Japan”, Proc. of Int. Conf. on Ferrites ICF1, Kyoto 1970, Y. Hoshino, S. Iida and M. Sugimoto editors, Univ. Park Press, Tokyo 1971, pXXIV

    Google Scholar 

  62. “Ferrites”, proc. of the Int. Conf. (ICF1), Y. Hoshino, S. Iida and M. Sugimoto editors, University Park Press, Tokyo 1971

    Google Scholar 

  63. “International Conference on Ferrites”, 2 (ICF2), Bellevue (France) 1976, J. de Phys. Colloque no. C-1 1977

    Google Scholar 

  64. “Ferrites”, Proc. of the ICF3 in Kyoto 1980, H. Watanabe, S. Iida and M. Sugimoto, Center for Academic Publications, Japan 1981

    Google Scholar 

  65. “Fourth International Conference on Ferrites”, (ICF4), San Francisco 1984 Advances in Ceramics volume 15 and 16, F.F.Y. Wang editor, The American Ceramic Society, Inc. Columbus, Ohio

    Google Scholar 

  66. Proc. of the Fifth International Conference on Ferrites (ICF5), Bombay, India 1989, Advances in ferrite volume 1 and 2, C.M. Srivastava and M.J. Patni editors, Mohan Primlani for Oxford & I.B.H. Publishing Co. Ltd., 66 Janpath, New Delhi 110001 (1989)

    Google Scholar 

  67. Bozorth, R. M., “Ferromagnetism” D. van Nostrand Company, Inc., New York 1968

    Google Scholar 

  68. Wohlfarth, R. M., “Ferromagnetic Materials” volume 3, North Holland, Publishing Company, Amsterdam, New York, Oxford 1982

    Google Scholar 

  69. Ho B. Im and Wickam, D., “Square-loop properties of materials in the system NiFe2O4-Fe3O4-MnFe3O4”, J. Appl. Phys. 35, 5 (1964) 1442

    Article  Google Scholar 

  70. Miyata, N., “Ferromagnetic crystalline anisotropy of MeFe2O4-Fe3O4 ferrite solid solutions”, J. Phys. Soc. Japan 16, 7 (1961) 1291

    Article  Google Scholar 

  71. Michalowsky, L., Phys. Status Solidi, 8 (1965) 543

    Article  Google Scholar 

  72. de Lau, J. G. M., “Influence of Chemical Composition and Microstructure on High-Frequency Properties of Ni-Zn-Co ferrites”, Thesis, Technical University Eindhoven 1975

    Google Scholar 

  73. Uitert L. G. van, “Electric Properties of and Conductivity in Ferrites”, Proc. I R E 44 1294–1303 (1956).

    Article  Google Scholar 

  74. Jonker, G. H., “Analysis of semiconducting properties of Cobaltferrite”, J Phys. & Chem. of Solids 9, 165 (1959)

    Article  Google Scholar 

  75. Stijntjes, T. G. W., Klerk, J. and Broese van Groenou, A., “Permeability and Conductivity of Ti-substitutes MnZn ferrites”, Philips Res. Rep. 25, 95–107 (1970).

    Google Scholar 

  76. “Soft Ferrite Selection Guide”, Philips Components, Marketing Communications, Eindhoven 1991

    Google Scholar 

  77. Goedbloed, Dr. J.J., “Elektromagnetische Competibiliteit. Analyse en onderdrukking van stoorproblemen”, Kluwer Technische Boeken B.V. DeventerAntwerpen, 1990

    Google Scholar 

  78. Koch, J. und Ruschmeyer, K., “Ferroxcube, Eigenschaften und Anwendungen”, Philips Components. Dr. Alfred Hüthig Verlag GmbH, Heidelberg, 1990

    Google Scholar 

  79. Christian T. S., Editor “Isolators and Circulators”, N.V. Philips Gloeilampenfabrieken, Eindhoven, 1974

    Google Scholar 

  80. Sevick, Jerry, “Transmission line Transformers”. Published 1990 by the American Radio Relay League, 225, Main Street, Newington, CT 06111

    Google Scholar 

  81. Storm H. F., “Magnetic Amplifiers”. Published (1955) John Wiley & Sons, New York

    Google Scholar 

  82. Mc Lymen, T., “Transformer and Inductor Design Handbook”. Published (1978) by Marcel Dekker, Inc., New York

    Google Scholar 

  83. Mulder, S. A., “On the design of low profile High Frequency Transformer Processing”, PCIM’90, Munich. Published by Intertec Communications Inc., Ventura / California

    Google Scholar 

  84. Peloschek, H. P., “Square loop ferrites and their applications”, Progress dielectrics, vol 5, New York: Academic press (1963)

    Google Scholar 

  85. Albers-Schoenberg, E., “Ferrites for microwave circuits and digital computer”, J. Appl. Physics, 25, [2] (1954)

    Google Scholar 

  86. “Soft Ferrites”, Data Handbook Philips Components MAO1. Eindhoven (1991)

    Google Scholar 

  87. Casimir, H. B. G., “Electrostatic machines, particle accelerators and industry”, Philips Techn. Rev. 3 [11/12] 309–311 (1969)

    Google Scholar 

  88. Brockman, F. G., Heide von der H. and Louwerse, M.W., “Ferroxcube for proton synchrotons”, Philips Techn. Rev. 30 [11/12] 312–329 (1969)

    Google Scholar 

  89. Gouiran, R., “Five major proton synchrotons”, Philips Tech. Rev. 30 [11/12] 330–365 (1969)

    Google Scholar 

  90. Kaashoek, J., “A study of Magnetic deflections errors”, thesis, Technical University of Eindhoven, Eindhoven 1968

    Google Scholar 

  91. Vonk, R., “Magnetische afbuiging in televisieweergeefbuizen”, Philips Techn. Tijdschrift 32 [3] 61–72

    Google Scholar 

  92. Heijnemans, W. A. L., Nieuwedijk, J.A.M. and Vink, N.G., “De afbuigspoelen van het kleurenbeeldsysteem 30AX”,Philips Techn. Tijdschrift 39 [6/7] 154171

    Google Scholar 

  93. Barten, P. G. J. and Kaashoek, J., “3OAX self-aligning 110° in-line colour TV display”, Electronic Components and Applications 1 [2] 103–108

    Google Scholar 

  94. Eeden, A. L. G v.d. and Sluyterman A. A. S.,” Colour monitor tubes with magnetic-field suppression and antistatic coating”, Electronic Components and Applications 10 [1] 48–52

    Google Scholar 

  95. Brabers, V. A. M., Merceron T., Porte, M. and Krishnan, R. “Magnetic Anisotropy of Magnesium Ferrous Ferrites”, J. Mag. Mag. Mat. 15–18 545–546 (1980)

    Article  Google Scholar 

  96. Brickford, L. R., Brownlow, J. M. and Penoyer, R. F. “Magnetocrystalline Anisotropy in Cobalt-substituted Magnetite Single Crystals”.

    Google Scholar 

  97. Welzen, J. T. A. M., “Cobalt substitution in MgZn ferrite Internal report”, Philips Electronic Component and Materials 1980

    Google Scholar 

  98. Brabers, V.A. M., Hirsch, A. A., van der Vleuten, W. C. and van Doormalen, P., “Magnetostriction of magnesium ferrous ferrites”. IEEE Trans. Magn. 14 895 (1978)

    Article  Google Scholar 

  99. Guillaud, C. and Sage, M., “Propriétés Magnetiques des Ferrites Mixtes de Magnesium et de Zinc”. Compt. R. Ac. Sc. Paris 232 944–946 (1951)

    Google Scholar 

  100. Hanna, C. R.: “Design of Reactances and Transformers which Carry Direct Current”. Transaction A.I.E.E. 1927, S.155–160

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Hinck, H., Visser, E., Stijntjes, T.G.W. (1994). Weichmagnetische Keramiken. In: Schaumburg, H. (eds) Keramik. Werkstoffe und Bauelemente der Elektrotechnik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-05976-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-05976-9_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-05977-6

  • Online ISBN: 978-3-663-05976-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics