Skip to main content

Immobilisation of Biological Component

  • Chapter
Biosensors: an Introduction

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

Abstract

In order to make a viable biosensor, the biological component has to be properly attached to the transducer. This process is known as immobilisation. There are five regular methods of doing this, as follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. M. Abeysekera, J. Grimshaw and J. Trocha-Grimshaw (1992) ‘Electroactive polyamino acids, Part 5’, J. Chem. Soc. Perkin 2, 43.

    Google Scholar 

  • R. N. Adams (1969) Electrochemistry at Solid Electrodes, Marcel Dekker, New York.

    Google Scholar 

  • S. A. Barker (1987) ‘Immobilisation of the biological component of biosensors’, in A. P. F. Turner, I. Karube and G. S. Wilson (Eds), Biosensors: Fundamental and Applications, Oxford University Press, Oxford, Chap. 6, pp. 85–99.

    Google Scholar 

  • P. N. Bartlett and D. J. Caruana (1992) ‘Electrochemical immobilisation of enzymes. Part V. Microelectrodes for the detection of glucose oxidase immobilised in a poly(phenol) film’, Analyst, 117, 1287.

    Article  Google Scholar 

  • S. Braun, S. Shtelzer, S. Rappaport, D. Avnir and M. Ottolenghi (1992) ‘Biocatalysis by sol—gel entrapped enzymes’, J. Non-Cryst. Solids, 147–148, 739.

    Article  Google Scholar 

  • B. R. Eggins (in press) ‘Electrochemical sensors and biosensors’, in M. R. Smyth, M. E. G. Lyons and V. Cunnane (Eds), Electrochemical Principles and Applications. Ellis Harwood, Chichester.

    Google Scholar 

  • M. W. Espenscheid, A. R. Ghatak-Roy, R. B. Moore, III, R. M. Penner, M. N. Szentirmay and C. R. Martin (1980) ‘Sensors from polymer modified electrodes’, J. Chem. Soc. Faraday Trans 1, 82, 1051.

    Google Scholar 

  • M. J. Green and P. I. Hilditch (1991) Analyst, 116, 1217.

    Article  Google Scholar 

  • J. Grimshaw and S. D. Perera (1990) ‘Electrochemical behaviour of poly(thiophenebenzoquinone) films’, J. Electroanal. Chem., 278, 287.

    Article  Google Scholar 

  • J. Grimshaw and J. Trocha-Grimshaw (1990) ‘Electron transfer in a novel synthetic membrane analogue for cytochrome-c’, J. Chem. Soc. Chem. Commun.,157.

    Google Scholar 

  • E. A. H. Hall (1990) Biosensors, Open University Press, Milton Keynes, pp. 23–29.

    Google Scholar 

  • D. Hyndman, R. Burrell, G. Lever and T. G. Flynn (1992) ‘Protein immobilisation to alumina supports. II. Papain immobilisation to alumina via organophosphate linkers’, Biotechnol. Bioeng., 40, 1328.

    Article  Google Scholar 

  • M. E. G. Lyons (1991) ‘Electrochemistry—developing technologies and applications’, Annu. Rep. Prog. Chem. Sect. C, 88, 135.

    Article  Google Scholar 

  • M. E. G. Lyons, C. H. Lyons, C. Fitzgerald and T. Banon (1993) Analyst, 118, 361.

    Article  Google Scholar 

  • F. A. McArdle and C. K. Persaud (1993) ‘Development of an enzyme-based biosensor for atrazine detection’, Analyst, 118, 419.

    Article  Google Scholar 

  • H. Meier, F. Lantreibecq and C. M. Tran (1992) ‘Application and automation of flow injection analysis (FIA) using fast responding enzyme glass electrodes to detect penicillin in fermentation broth and urea in human serum’, J. Autom. Chem., 14, 137.

    Article  Google Scholar 

  • A. N. Reshetilov, M. V. Donova and K. A. Koshcheenko (1992) ‘Immobilised cells of Gluconobacter oxydans as a receptor element of a glucose sensor’, Prikl, Biokhim. Mikrobiol., 28, 518.

    Google Scholar 

  • A. W. Snow and W. R. Barger (1989) ‘Phthalocyanine films in chemical sensors’, in C. C. Leznoff and A. B. P. Lever (Eds), Phthalocyanine Properties and Applications, VCH, New York.

    Google Scholar 

  • P. R. Teasdale and G. G. Wallace (1993) ‘Molecular recognition using conducting polymers: basis of electrochemical sensing technology’, Analyst,118, 329.

    Google Scholar 

  • J. Wang (1994) ‘Decentralised electrochemical monitoring of trace metals: from disposable strips to remote electrodes’, Analyst, 119, 763.

    Article  Google Scholar 

  • J. Wang and M. S. Lin (1988) ‘Mixed plant tissue–carbon paste bioelectrode’, Anal. Chem., 60, 1545.

    Article  Google Scholar 

  • S. A. Wring and J. P. Hart (1992) ‘Chemically modified screen printed electrodes’, Analyst, 117, 1299.

    Article  Google Scholar 

  • L. Ye, M. Hammerle, A. J. J. Olsthoorn, W. Schuhmann, H. -L. Schmidt, J. A. Duine and A. Heller (1993) ‘High current density “wired” quinoprotein glucose dehydrogenase electrode’, Anal. Chem., 65, 238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd and B.G. Teubner

About this chapter

Cite this chapter

Eggins, B.R. (1996). Immobilisation of Biological Component. In: Biosensors: an Introduction. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-05664-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-05664-5_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-05665-2

  • Online ISBN: 978-3-663-05664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics