Skip to main content

Calibration of Nonlinear Constitutive Laws for Elastic-Plastic Analysis in Presence of Creep Strains

  • Chapter
Structural Safety Evaluation Based on System Identification Approaches
  • 42 Accesses

Abstract

Parameters are estimated for Bailey-Norton’s creep law and for a simplified ORNL plasticity model on the basis of Gauss-Newton’s and complex methods. Creep and plastic strains as given by the calibrated models are compared with experimental data and good agreement is found (particularly for creep strains). Finally, a numerical analysis has been carried out by considering a simple system subject to plastic and creep strains. The relevant results are reported and show satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isenberg, J., Collins, J.D., Kavarna, J., “Statistical estimations of geotechnical material model parameters from in situ test data”, Proc. ASCE Spec. Conf. on Probabilistic Mechanics and Structural Reliability, Tucson, 1979, 348–352.

    Google Scholar 

  2. Gioda, G., Maier, G., “Direct search solution of an inverse problem in elastoplasticity: Identification of cohesion friction angle and ‘in situ’ stress by pressure tunnel tests”, Int. J. Num. Meth. Eng., 15, 1980, 1823–1848.

    Article  MATH  Google Scholar 

  3. Ibanez, P., “Identification of dynamic parameters of linear and nonlinear structural Models from Experimental Data”, Nucl. Eng. Design, 1972, 25–30.

    Google Scholar 

  4. Beliveau, J.G., “Identification of viscous damping in structures from modal information”, J. Appl. Mech. 98, 2, 1976, 335–339.

    Article  Google Scholar 

  5. Hart, G.C., Torkamani, M.A.M., “Structural system identification”, in Stochastic problems in mechanics, Eds. Ariaratuam S.T., Leipholz M.M.E., Univ of Waterloo Canada, 1977, 207–228.

    Google Scholar 

  6. Hart, G.C., Yao, J.T.P., “System identification in structural dynamics”, J. Eng. Mech. Div., Proc. ASCE, 103, 6, 1977, 1089–1104.

    Google Scholar 

  7. Natke, H.G., “Die Korrectur des Rechnenmodelles eines Elastomechanischen Systems mittels gemessener erzungener Schwingungen”, Ing. Arch., 46, 1977, 169.

    Article  MATH  Google Scholar 

  8. Yun, C.B., Shinozuka, M., “Identification of non-linear structural dynamic systems”, J. Struct. Mech., 8, 2, 1980, 187–203.

    Article  Google Scholar 

  9. Tonarelli, F., Corsi, F., “Benchmark calculation programme - Step 2, Phase 4 - Leicester 2 bar test - Final report” (CEE Study Contract)

    Google Scholar 

  10. Dennis, J.E., “A user’s guide to nonlinear optimization algorithms”, Proc. of IEEE, Vol. 72, N. 12, 1984, 1765–1776.

    Article  Google Scholar 

  11. Smirnov, V.I., “A course of higher mathematics”, Vol. 3, Pergamon Press, Oxford, 1964.

    Google Scholar 

  12. Dempster, M.A.H., “Elements of optimization”, Chapman & Hall, London, 1975

    Google Scholar 

  13. Box, M.J., “A new method of constraint optimization and comparison with other methods”, Computer Journal, 1965, 8, 42

    Article  MathSciNet  MATH  Google Scholar 

  14. Hibbit, Karlsson, Sorensen, Inc., Abaqus theory manual, Version 4. 5, Providence, Rhode Island, 1984

    Google Scholar 

  15. White, P.S., “An account of the ORNL constitutive equations”, GEC Internal Report, Mechanical Engineering Laboratory, Whetstone, Leicester, UK

    Google Scholar 

  16. Megahed, M.,Ponter, A.R.S., Morrison, C.J., “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel”, Int. J. Mech. Sci., Vol. 26, 1984, 149–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Nappi, A., Gavazzi, A. (1988). Calibration of Nonlinear Constitutive Laws for Elastic-Plastic Analysis in Presence of Creep Strains. In: Structural Safety Evaluation Based on System Identification Approaches. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-05657-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-05657-7_7

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06313-9

  • Online ISBN: 978-3-663-05657-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics