Advertisement

Keywords

Meromorphic Function Algebraic Variety Distribution Theory Defect Relation Holomorphic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fenn, Nova Ser. A 3 (4) (1941), 171–183.Google Scholar
  2. [2]
    A. Andreotti and W. Stoll, Analytic and algebraic dependence of meromorphic functions. Lecture Notes in Mathematics, 234 (1971), 390 pp. Springer–Verlag.CrossRefGoogle Scholar
  3. [3]
    A. Baerenstein, Proof of Edrei’s spread conjecture. Proc. London Math. Soc., 26 (1973), 418–434.Google Scholar
  4. [4]
    A. Biancofiore, A hypersurface defect relation for a class of meromorphic maps, Trans. Amer. Math. Soc., 270 (1982), 47–60.CrossRefGoogle Scholar
  5. [5]
    A. Biancofiore and W. Stoll, Another proof of the lemma of the logarithmic derivative in several complex variables. In “Recent developments in several complex variables,” Annals of Math. Studies, 100, Princeton University Press, Princeton NJ, (1981), 29–45.Google Scholar
  6. [6]
    L. Bieberbach, Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche ein schlichte volum treue Abbildung des ℝ4 auf einen Teil seiner selbst vermitteln. Sitz. Ber. preuss. Akad. Wiss, 1933.Google Scholar
  7. [7]
    E. Borel, Sur les zeros des fonctions entieres, Acta Math., 20 (1897), 357–396.CrossRefGoogle Scholar
  8. [8]
    R. Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math., 114 (1965), 71–112.CrossRefGoogle Scholar
  9. [9]
    D. Burns, Curvature of the Monge–Ampere foliations and parabolic manifolds, Ann. of Math., 115 (1982), 349–373.CrossRefGoogle Scholar
  10. [10]
    J. Carlson, A result on the value distribution of holomorphic maps f : ℂn → ℂn, Proc. Symp. in pure Math., 30 part 2 (1977), 225–228.CrossRefGoogle Scholar
  11. [11]
    J. Carlson and Ph. Griffiths. Defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math., 95 (1972), 557–584.CrossRefGoogle Scholar
  12. [12]
    H. Cartan, Sur les zeros des combinaisons lineaires de p fonctions holomorphes donnees, Mathematica (cluj), 7 (1933), 80–103.Google Scholar
  13. [13]
    S. S. Chern, Complex analytic mappings of Riemann surfaces I, Amer. J. Math., 82 (1960), 323–337.CrossRefGoogle Scholar
  14. [14]
    S. S. Chern, The integrated form of the first main theorem for complex analytic mappings in several variables, Ann. of Math., (2)71 (1960), 536–551.CrossRefGoogle Scholar
  15. [15]
    C. T. Chuang, Une generalisation d’une inegalite de Nevanlinna, Scientia Sinica, 13 (1964), 887–895.Google Scholar
  16. [16]
    C. T. Chuang, On the distribution of values of meromorphic functions, Chinese Ann. Math., 1 (1980), 91–114.Google Scholar
  17. [17]
    E. F. Collingwood, Sur quelques theoremes de M. Nevanlinna, CR Acad. Sci. Paris, 179 (1924), 955–957.Google Scholar
  18. [18]
    M. Cornalba and Ph. Griffiths. Analytic cycles and vector bundles on non–compact algebraic varieties, Invent. Math., 28 (1975), 1–106.CrossRefGoogle Scholar
  19. [19]
    M. Cornalba and B. Shiffman, A counter example to the “Transcendental Bezout Problem,” Ann. of Math., 96 (1972), 402–406.CrossRefGoogle Scholar
  20. [20]
    M. Cowen, Hermitian vector bundles and value distribution for Schubert cycles, Trans. Amer. Math. Soc., 180 (1973), 189–228.CrossRefGoogle Scholar
  21. [21]
    M. Cowen and Ph. Griffiths, Holomorphic curves and metrics of non– negative curvature, J. Analyse Math., 29 (1976), 93–153.CrossRefGoogle Scholar
  22. [22]
    L. Dektjarev, The general first fundamental theorem of value distribution. Dokl. Akad. Nauk. SSR, 193 (1970), (Soviet Math. Dokl., 11 (1970), 961–963.)Google Scholar
  23. [23]
    A. Dinghas, Wertverteilung meromorpher Funktionen in einund mehrfach zusammenhängenden Gebieten, Lecture Notes in Mathematics. 783 (1980), 145 pp., Springer–Verlag.Google Scholar
  24. [24]
    D. Drasin, The inverse problem of Nevanlinna theory, Acta Math., 138 (1977), 83–151.CrossRefGoogle Scholar
  25. [25]
    J. Dusfresnoy. Sur les valeurs exceptionelles des fonctions meromorphes voisines d’une fonction meromorphe donnee, CR Acad. Sci. Parris, 208 (1939), 255–257.Google Scholar
  26. [26]
    A. Edrei, Solution of the deficiency problem for functions of small lower order, Proc. Lond Math. Soc., 26 (1973), 435–445.CrossRefGoogle Scholar
  27. [27]
    P. Fatou, Sur les fonctions meromorphes de deux variable, CR Acad. Sci. Paris, 175 (1922), 862–865, 1030–1033.Google Scholar
  28. [28]
    W. H. J. Fuchs, The development of the theory of deficient values since Nevanlinna, Ann. Acad. Scie. Fennicae Ser. A. I. Math., 7 (1982), 33–84.Google Scholar
  29. [29]
    H. Fujimoto, Remarks to the uniqueness problem of meromorphic maps. I, II, III, IV Nagoya Math. J., 71 (1978), 13–24, 25–41, ibid, 75 (1979), 71–85, ibid 83 (1981), 153–181.Google Scholar
  30. [30]
    H. Fujimoto, On the defect relation for the derived curves of a holomorphic curve in ℙn(ℂ), Tôkoku Math. J., 34 (1982), 141–160.CrossRefGoogle Scholar
  31. [31]
    H. Fujimoto, Non–integrated defect relation for meromorphic maps into \( {\mathbb{P}^{{N_1}}}\left( \mathbb{C} \right) \times \ldots \times {\mathbb{P}^{{N_k}}}\left( \mathbb{C} \right) \) , (1983), . 44, preprint.Google Scholar
  32. [32]
    P. M. Gauthier and W. Hengartner, The value distribution of most functions of one or several complex variables, Ann. of Math., 96 (1972), 31–52.CrossRefGoogle Scholar
  33. [33]
    M. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., 169 (1972), 89–103.CrossRefGoogle Scholar
  34. [34]
    M. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43–75.CrossRefGoogle Scholar
  35. [35]
    Ph. Griffiths, Entire holomorphic mappings in one and several complex variables, Annals of Math. Studies, 85 (1976), 99 pp., Princeton Univ. Press, Princeton, NY.Google Scholar
  36. [36]
    Ph. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130 (1973), 145–220.CrossRefGoogle Scholar
  37. [37]
    F. Gross, Factorization of meromorphic functions, Math. Research Center. Naval Research Laboratory, Washington, D. C. (1972), pp 258.Google Scholar
  38. [38]
    G. Hällström, Über meromorphe Funktionen mit mehrfach zusammenhängenden Existenzgebieten, Acta Acad. Abo. Math. Phys., 12, 8, (1939), pp 100.Google Scholar
  39. [39]
    W. K. Hayman, Meromorphic functions, Oxford Math. Monographs, (1964), pp 191.Google Scholar
  40. [40]
    W. K. Hayman, Some achievements of Nevanlinna theory, Ann. Acad. Scie. Fennicae. Ser. AI Math., 7 (1982), 65–71.Google Scholar
  41. [41]
    W. K. Hayman, and P. B. Kennedy, Subharmonic functions, London Math. Soc. Monographs 9 Academic Press, London–New York–San Francisco (1976), pp. 281.Google Scholar
  42. [42]
    W. Hengartner, Famille des traces Sur les droites complexes dune fonction plurisous harmonic du entiere dans ℂn, Comment. Math. Helv., 43 (1968), 358–377.CrossRefGoogle Scholar
  43. [43]
    G. M. Henkin, Solutions with estimates of the H. Lewy and Poincare–Lelong equations. Constructions of functions of the Nevanlinna class with prescribed zeros in strictly pseudoconvex domains, Dokl. Akad. Nauk. SSSR 210 (1975), 771–774. (Soviet Math. Dokl., 16 (1975), 1310–1314.)Google Scholar
  44. [44]
    C. W. Henson and L. A. Rubel, Some applications of Nevanlinna theory to mathematical logic: Identities of exponential functions, Trans. Amer. Math. Soc., 282 (1984), 1–32.Google Scholar
  45. [45]
    J. Hirschfelder, The first main theorem of value distribution in several variables, Invent. Math., 8 (1969), 1–33.CrossRefGoogle Scholar
  46. [46]
    H. Kneser, Zur Theorie der gebrochenen Funktionen mehrerer Veränderlichen. Jber. Deutsch. Math. Verein., 48 (1938), 1–28.Google Scholar
  47. [47]
    R. O. Kuala, Functions of finite λ–type in several complex variables, Trans. Amer. Math. Soc., 161 (1970), 327–358.Google Scholar
  48. [48]
    O. Lehto, On the birth of Nevanlinna theory, Ann. Acad. Sci. Fennicae Ser. A, I. Math., 7 (1982), 5–23.Google Scholar
  49. [49]
    P. Lelong, Sur l’extension aux fonctions entieres de n variables, d’ordre fini, d’un development canonique de Weierstrass, CR Acad. Sci. Paris, 237 (1953), 865–867.Google Scholar
  50. [50]
    P. Lelong, Integration sur une ensemble analytique complexe, Bull. Soc. Math. France, 85 (1975), 328–370.Google Scholar
  51. [51]
    P. Lelong, Fonctions entieres (n–variables) et fonctions plurisousharmoniques d’ordre fini dans ℂn, J. Analyse Math., 12 (1964), 365–407.CrossRefGoogle Scholar
  52. [52]
    L. Lempert, Boundary behavior of meromorphic functions of several variables, Acta Math., 144 (1980), 1–25.CrossRefGoogle Scholar
  53. [53]
    B. Ja. Levin, Distribution of zeros of entire functions, Transl. of Math. Monographs 5, Americ. Math. Soc., (1964), pp 493.Google Scholar
  54. [541.
    H. Levine, A theorem on holomorphic mappings into complex projective space, Ann. of Math., (2) 71 (1960), 529–535.CrossRefGoogle Scholar
  55. [55]
    J. Miles, Quotient representation of meromorphic functions, J. Analyse Math., 25 (1972), 371–388.CrossRefGoogle Scholar
  56. [56]
    R. E. Molzon, Sets omitted by equidimensional holomorphic mappings, Amer. J. Math., 101 (1979), 1271–1283.CrossRefGoogle Scholar
  57. [57]
    R. E. Molzon, Degeneracy theorems for holomorphic mappings between algebraic varieties, Trans. Amer. Math. Soc., 270 (1982), 183–192.CrossRefGoogle Scholar
  58. [58]
    R. E. Molzon, Some examples in value distribution theory, Lecture Notes in Mathematics, 981 (1983), 90–101. Springer–Verlag.CrossRefGoogle Scholar
  59. [59]
    R. E. Molzon, B. Shiffman and N. Sibony, Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann., 257 (1981), 43–59.CrossRefGoogle Scholar
  60. [60]
    S. Mori, On the deficiencies of meromorphic maps of ℂm into ℙn(ℂ), Nagoya Math. J., 67 (1977), 165–176.Google Scholar
  61. [61]
    S. Mori, The deficiencies and the order of holomorphic mappings of ℙℂn into a compact complex manifold, Tôhoku Math. J., 31 (1979), 285–291.CrossRefGoogle Scholar
  62. [62]
    S. Mori, Holomorphic curves with maximal deficiency sum, Kodai Math., J., 2 (1979), 116–122.CrossRefGoogle Scholar
  63. [63]
    S. Mori, Remarks on holomorphic mappings, Contempory Math., 25 (1983), 101–114.CrossRefGoogle Scholar
  64. [64]
    J. Murray, A second main theorem of value distribution theory on Stein manifolds with pseudoconvex exhaustion, Thesis, Notre Dame (1974), pp 1–69.Google Scholar
  65. [65]
    R. Nevanlinna, Einige Eindentigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367–391.CrossRefGoogle Scholar
  66. [66]
    R. Nevanlinna, Le Theoreme de Picard–Borel et la Theorie des Fonctions Meromorphes, Gauthiers–Villars, Paris (1929), reprint Chelsea–Publ. Co., New York (1974), pp 171.Google Scholar
  67. [67]
    R. Nevanlinna, Eindeutige analytische Funktionen 2nd ed. Die Grundl. d. Math. Wiss., 46 (1953), pp 379. Springer–Verlag.Google Scholar
  68. [68]
    D. J. Newman, Problem 84–6*, The Math. Intelligencer, 6 (2) (1984), 39.CrossRefGoogle Scholar
  69. [69]
    J. Noguchi, A relation between order and defects of meromorphic mappings of ℂn into ℙN(ℂ), Nagoya Math. J., 59 (1975), 97–106.Google Scholar
  70. [70]
    J. Noguchi, Meromorphic mappings of a covering space over ℂn into a projective variety and defect relations, Hiroshima Math. J., 6 (1976), 265–280.Google Scholar
  71. [71]
    J. Noguchi, Holomorphic curves in algebraic varieties, Hiroshima Math. J., 7 (1977), 833–853. Supplement: Hiroshima Math. J., 10 (1980), 229–231.Google Scholar
  72. [72]
    J. Noguchi, On value distribution of meromorphic mappings of covering spaces over Cm into algebraic varieties, pp 35, preprint.Google Scholar
  73. [73]
    G. Patrizio, Boundary behavior of meromorphic maps, Math. Ann., 261 (1982), 111–132.CrossRefGoogle Scholar
  74. [74]
    E. Picard, Sur une propriete des fonctions entieres, CR Acad. Sci. Paris, 88 (1879), 1024–1027.Google Scholar
  75. [75]
    J. L. Potier, Fibres vectoriels de rang l d’ordre fini, Bull. Soc. Math. de France, 104 (1976), 349–367.Google Scholar
  76. [76]
    S. Rickmann, Value distribution of quasimeromorphic mappings, Ann. Acad. Sci. Fenn. A I. Math 7 (1981), 81–85.Google Scholar
  77. [77]
    L.I. Ronkin, Introduction to the theory of entire functions of several variables. 44 Transl. of Math Monog. (1974) pp273.Google Scholar
  78. [78]
    L. Sario and K. Noshiro, Value distribution theory, Van Nostrand, Princeton, NJ, (1966), pp 236.CrossRefGoogle Scholar
  79. [79]
    B. Shiffman, Nevanlinna defect relations for singular divisors, Invent. math., 31 (1975), 155–182.CrossRefGoogle Scholar
  80. [80]
    B. Shiffman, Holomorphic curves in algebraic manifolds, Bull. Amer. Math. Soc., 83 (1977), 553–568.CrossRefGoogle Scholar
  81. [81]
    B. Shiffman, On holomorphic curves and meromorphic maps in projective spaces, Indiana Univ. Math. J., 28 (1979), 627–641.CrossRefGoogle Scholar
  82. [82]
    B. Shiffmann, Introduction to Carlson–Griffiths equidistribution theory, Lecture Notes in Mathematics, 981 (1983), 44–89. Springer–Verlag.Google Scholar
  83. [83]
    B. Shiffman, New defect relations for meromorphic functions on ℂn, Bull Amer. Math. Soc. (New Series), 7 (1982), 599–601.CrossRefGoogle Scholar
  84. [84]
    B. Shiffman, A general second main theorem for meromorphic functions on ℂn, Amer. J. Math., 106 (1984), 509–531.CrossRefGoogle Scholar
  85. [85]
    H. Skoda, Croissançe des fonctions entieres s’annulant sur une hypersurface donnee de ℂn, Seminair P. Lelong 1970–71, Lecture Notes in Mathematics, 275 (1972), 82–105. Springer–Verlag.CrossRefGoogle Scholar
  86. [86]
    H. Skoda, Valeurs au,bord les solutions de l’operateur d”, et caracterisation des zéros des fonctions de la classe Nevanlinna, Bull. Soc. Math. France, 104 (1976), 225–299.Google Scholar
  87. [87]
    L. Smiley, Dependence theorems for meromorphic maps, Thesis, Notre Dame (1979), pp 57.Google Scholar
  88. [88]
    L. Smiley, Geometric conditions for unicity of holomorphic curves, Contemp. Math., 25 (1983), 149–154.CrossRefGoogle Scholar
  89. [89]
    J. Spellecy, A defect relation on polydiscs, Thesis, Notre Dame, pp 63.Google Scholar
  90. [90]
    W. Stoll, Mehrfache Integrale auf komplexen Mannigfaltigkeiten, Math. Zeitschr., 57 (1952), 116–154.CrossRefGoogle Scholar
  91. [91]
    W. Stoll, Ganze Funktionen endlicher Ordnung mit gegebenen Nullstellenflächen, Math. Zeitschr., 57 (1953), 211–237.CrossRefGoogle Scholar
  92. [92]
    W. Stoll, Konstruktion Jacobischer and mehrfach periodischer Funktionen zu gegebenen Nullstellenflächen, Math. Zeitschr., 126 (1953), 31–43.Google Scholar
  93. [93]
    W. Stoll, Die beiden Hauptsätze der Wertverteilungstheorie bei Funktionen mehrerer komplexen Veränderlichen, I. Acta Math., 90 (1953), 1–115, II Acta Math., 92 (1954), 55–169.CrossRefGoogle Scholar
  94. [94]
    W. Stoll, The growth of the area of a transcendental analytic set I, II Math. Ann., 156 (1964), 47–78, 144–170.CrossRefGoogle Scholar
  95. [95]
    W. Stoll, Normal families of non–negative divisors, Math. Zeitschr., 84 (1964), 154–218.CrossRefGoogle Scholar
  96. [96]
    W. Stoll, A general first main theorem of value distribution, Acta Math., 118 (1967), 111–191.CrossRefGoogle Scholar
  97. [97]
    W. Stoll, About the value distribution of holomorphic maps into projective space, Acta Math., 123 (1969), 83–114.CrossRefGoogle Scholar
  98. [98]
    W. Stoll, Value distribution of holomorphic maps into compact, complex manifolds, Lecture Notes in Mathematics, 135 (1970), pp. 267. Springer–Verlag.Google Scholar
  99. [99]
    W. Stoll, Value distribution of holomorphic maps. Several Complex Variables I, Lecture Notes in Mathematics, 155 (1970), 165–190. Springer–Verlag.Google Scholar
  100. [100]
    W. Stoll, Deficit and Bezout estimates. Value Distribution Theory. Part B. (edited by R. O. Kujala and A. L. Vitter III), Pure and Appl. Math., 25 Marcell Dekker, New York (1973), pp 271.Google Scholar
  101. [101]
    W. Stoll, Holomorphic functions of finite order in several complex variables, CBMS Regional Conference Series in Mathematics 21 Amer. Math. Soc., Providence, RI, (1974), pp 83.Google Scholar
  102. [102]
    W. Stoll, Aspects of value distribution theory in several complex variables, Bull. Amer. Math. Soc., 83 (1977), 166–183.CrossRefGoogle Scholar
  103. [103]
    W. Stoll, Value distribution on parabolic spaces, Lecture Notes in Mathematics, 600 (1977), pp 216. Springer–Verlag.Google Scholar
  104. [1041.
    W. Stoll, A Casorati–Weierstrass theorem for Schubert zeros of semi–ample, holomorphic vector bundles, Atti Acad. Naz. Lincei. Mem. C1. Sci. Fis. Mat. Natur. Ser. VIIIm 15 (1978), 63–90.Google Scholar
  105. [105]
    W. Stoll, The characterization of strictly parabolic manifolds, Ann. Scuola. Norm. Sup. Pisa, 7 (1980), 87–154.Google Scholar
  106. [106]
    W. Stoll, The characterization of strictly parabolic spaces, Compositio Mathematics, 44 (1981), 305–373.Google Scholar
  107. [107]
    W. Stoll, Introduction to value distribution theory of meromorphic maps, Lecture Notes in Mathematics, 950 (1982), 210–359. Springer–Verlag.Google Scholar
  108. [108]
    W. Stoll, The Ahlfors–Weyl theory of meromorphic maps on parabolic manifolds, Lecture Notes in Mathematics, 981 (1983), 101–219. Springer–Verlag.Google Scholar
  109. [109]
    W. Stoll, Value distribution and the lemma of the logarithmic derivative on polydiscs, Internat. J. Math. Sci., 6 (1983), no. 4, 617–669.Google Scholar
  110. [110]
    P. Thie, The Lelong number of a point of a complex analytic set, Math. Ann., 172 (1967), 269–312.CrossRefGoogle Scholar
  111. [111]
    M. Tsuji, Potential theory in modern function theory, Chelsea Publ. Co., New York, NY, 1975, pp 590.Google Scholar
  112. [112]
    Ch. Tung, The first main theorem of value distribution on complex spaces, Atti della Acc. Naz d. Lincei Serie VIII,15 (1979), 93–262.Google Scholar
  113. [113]
    G. Valiron, Lectures on general theory of integral functions, Chelsea Publ. Co., New York, NY, 1949, pp 208.Google Scholar
  114. [114]
    B. L. Van Der Waerden, Moderne Algebra I, 1 ed. Die Grundl. d. Math. Wiss., 33 (1930), pp 243. Springer–Verlag.Google Scholar
  115. [115]
    A. Vitter, The lemma of the logarithmic derivative in several complex variables, Duke Math. J., 44 (1977), 89–104.CrossRefGoogle Scholar
  116. [116]
    K. T. W. Weierstrass, Theorie der eindeutigen analytischen Funktionen, Abhandl. Kön. Preuss. Akad. Wiss. Berlin, (1876), 11–60.Google Scholar
  117. [117]
    A. Weitsman, A theorem on Nevanlinna deficiencies, Acta. Math., 128 (1972), 41–52.CrossRefGoogle Scholar
  118. [118]
    H. Weyl and J. Weyl, Meromorphic curves, Ann. of Math., 39 (1938), 516–538.CrossRefGoogle Scholar
  119. [119]
    H. Weyl and J. Weyl, Meromorphic functions and analytic curves, Annals of Mathematics Studies, 12, Princeton University Press, Princeton, NY, (1943), pp 269.Google Scholar
  120. [120]
    W. Wirtinger, Ein Integral satz über analytische Gebilde im Gebiete von mehreren komplexen Veränderlichen, Monatshefte Math. Phys., 45 (1937), 418–431.Google Scholar
  121. [121]
    H. Wittich, Neuere Unterschungen über eindeutige Funktionen, Erg. d. Math. and ihrer Grenzgeb, 2 ed. (1968). Springer-Verlag.CrossRefGoogle Scholar
  122. [122]
    H. Wittich, Anwendungen der Wertverteilungslehre auf gewöhnliche Differentialgleichungen, Ann. Acad. Scie. Fennicae Ser. AI Math., 7 (1982), 89–97.Google Scholar
  123. [123]
    P. M. Wong, Defect relations for maps on parabolic spaces and Kobayashi metrics on projective spaces omitting hyperplanes, Thesis, Notre Dame, (1976), pp 231.Google Scholar
  124. [124]
    P. M. Wong, Geometry of the homogeneous complex Monge–Ampere equation, Invent. Math., 67 (1982), 261–274.Google Scholar
  125. [1251.
    H. Wu, Remarks on the first main theorem in equidistribution theory, I, II, III, IV, J. Differential Geometry, 2 (1968), 197–202, 369–384, ibid 3 (1969), 83–94, 433–446.Google Scholar
  126. [126]
    H. Wu, The equidistribution theory of holomorphic curves, Annals of Mathematics Studies, 64, Princeton Univ. Press, Princeton, NJ, (1970), pp 219.Google Scholar
  127. [127]
    Lo Yang, Deficient functions of meromorphic functions, Scientia Sinica, 24 (1981), 1179–1189.Google Scholar
  128. [128]
    O. Zariski and P. Samuel, Commutative Algebraic I, D. Van Nostrand Co., Princeton, NJ, (1958), pp 329.Google Scholar
  129. [129]
    H. J. W. Ziegler, Vector valued Nevanlinna Theory, Pitman Advanced Publ. Program. Research Notes in Math., 73 (1982), pp 201. Remark. When this manuscript was being completed for publication, Professor Shiffman sent me a preprint of the paper:Google Scholar
  130. [130]
    Charles F. Osgood, Sometimes effect Thue-Siegel-Roth-Schmidt-Nevanlinna Bounds, or better, to appear in Journal of Number Theory, pp 51. Charles Osgood asserts that he proved the Nevanlinna Conjecture (11.2) under the assumption (11.1) by means of number theory. The paper is difficult to understand and is still under investigation. The result was announced in:Google Scholar
  131. [131]
    Charles F. Osgood, A fully general Nevanlinna N-small function theorem and a sometimes effective Thue–Siegel–Roth–Schmidt Theorem for solutions to linear differential equation, Contemp. Math., 25 (1983), 129–130.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1985

Authors and Affiliations

  • Wilhelm Stoll

There are no affiliations available

Personalised recommendations