Juxtaglomerulärer Apparat

  • A. Werner Mondorf
  • Jürgen E. Scherberich


Der juxtaglomeruläre Apparat ist ein aus verschiedenen Zellelementen bestehender Gewebebezirk im Bereich des glomerulären Gefäßpols (Abb. 78–80; [2, 6]). Er ist offensichtlich als funktionelle Einheit in die Autoregulation der Nierendurchblutung integriert [3, 7, 12].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Biava, C., West, M. Fine structure of normal human juxtaglomerular cells II: specific and non-specific cytoplasmic granules. Amer. J. Pathol. 49, 955–80 (1966)Google Scholar
  2. [2]
    Bohle, A.: Elektronenmikroskopische Untersuchungen über die Struktur des Gefäßpols der Niere. Verh. Dtsch. Ges. Pathol. 43, 219–25 (1959)Google Scholar
  3. [3]
    Bohle, A., Christensen, J., Meyer, D.S., Laberke, H.G., Strauch, M.: Juxtaglomerular apparatus of the human kidney: correlation between structure and function. Kidney int. 22, 3–8 (1982)Google Scholar
  4. [4]
    Goormaghtigh, N.: Histological changes in the ischemic kidney with special reference to the juxtaglomerular apparatus. Amer. J. Pathol. 16, 409–16 (1940)Google Scholar
  5. [5]
    Hara, M., Meyer, D.: The size of the juxtaglomerular apparatus in glomerulonephritis with nephrotic syndrome. Virchows Arch., A. (path. Anat.) 367, 1–14 (1975)Google Scholar
  6. [6]
    Hartroft, P.M.: Studies on renal juxtaglomerular cells. Ill: the effect of experimental renal disease and hypertension in the rat. J. exp. Med. 105, 501–7 (1957)PubMedCentralPubMedGoogle Scholar
  7. [7]
    Hartroft, P.M., Hartroft, W.S.: Studies on renal juxtaglomerular cells. I: Variations produced by sodium chloride and desoxycorticosterone acetate. J. exp. Med. 97, 415–27 (1953)PubMedCentralPubMedGoogle Scholar
  8. [8]
    Kriz, W., Kaissling, B.: Variability of intercellular spaces between macula densa cells: a transmission electron microscopic study in rabbits and rats. Kidney int. 22, 9–17 (1982)Google Scholar
  9. [9]
    Lacasse, J., Ballak, M., Mercure, C., Gutkowska, J., Chapeau, C., Foote, S., Menard, J., Corvol, P., Cantin, Genest, J.: Immunocytochemical localization of Renin in juxtaglomerular cells: J. Histochem. cytochem. 33, 323–332 (1985)PubMedGoogle Scholar
  10. [10]
    Ryan, G.B., Alcorn, B. Coghlan, J.P., Hill, P.A., Jacobs, R.: Ultrastructural morphology of granule release from juxtaglomerular myoepithelioid and peripolar cells. Kidney int. 22, 3–8 (1982)Google Scholar
  11. [11]
    Taugner, R., Forssmann, W.G., Billich, H., Boll, U., Ganten, D., Seller, H.: Innervation of the juxtaglomerular apparatus and the effect of renal nerve stimulation. In: Coupland, R.E., Forssmann, W.G. (Eds.): Peripheral Neuroendocrine Interaction. Springer, Berlin 1978, pp. 153–63Google Scholar
  12. [12]
    Thurau, K., Mason, J.: The intrarenal function of the juxtaglomerular apparatus. MTP Press Limited, Lancaster 1974, Int. Rev. of Science, Physiol. Series I, p. 357Google Scholar
  13. [1]
    Camilleri, J.P., Phat, V.N., Bariety, J., Corval, P., Menard, J.: Use of specific antiserum for renin detection in human kidney. J. Histochem. Cytcchem. 28, 1343–46 (1980)Google Scholar
  14. [2]
    Campbell, D.J.: The site of angiotensin production: J. Hyper-tens. 3, 199–207 (1985)Google Scholar
  15. [3]
    Celio, M.R., Inagami, T.Q.: Renin in the human kidney. Histochemistry 72, 1–40 (1981)PubMedGoogle Scholar
  16. [4]
    Celio, M.R.: Angiotensin II immunoreactivity coexisting with renin in the human juxtaglomerular epithelioid cells. Kidney int. 22, 30–32 (1982)Google Scholar
  17. [5]
    Cook, W.F.: Cellular localization of renin. In: Fisher, J.W. (Ed.): Kidney Hormones. Academic Press, New York 1971, pp. 117–28Google Scholar
  18. [6]
    Dzau, V.J.: In vivo inhibition of Renin by antirenin antibodies: potential experimental and clinical applications: J. Cardiovasc. Pharmacol. 7, Suppl. 4, S53 - S57 (1985)Google Scholar
  19. [7]
    Fernandez, L.A., Twickler, J., Mead, A.: Neovascularization produced by angiotensin II: J. Lab. Clin. Med. 105, 141–145 (1985)PubMedGoogle Scholar
  20. [8]
    Foidart, J., Sraer, J., Delarue, F., Mathieu, P., Ardaillou, R.: Evidence for mesangial glomerular receptors for angiotensin Il linked to mesangial cell contractility. Fed. Europ. Biochem. Soc. 121, 333–43 (1980)Google Scholar
  21. [9]
    Galen, F.X., Devaux, C., Atlas, S., et al.: New Monoclonal Antibodies Directed Against Human Renin. J. Clin. Invest. 74, 723–735 (1984)PubMedCentralPubMedGoogle Scholar
  22. [10]
    Ganten, D., Hermann, K., Unger, T., Lang, R.E.: The tissue renin-angiotensin-system: focus on brain angiotensin, adrenal gland and arterial wall. Clin. Exp. Hypertens. (A) 5, 1099–1118 (1984)Google Scholar
  23. [11]
    Ganten, D., Ritz, E. (Eds.): Lehrbuch der Hypertonie, Schattauer 1985Google Scholar
  24. [12]
    Haber, E.: Which inhibitors will give us true insight into what renin really does?: J. Hypertens. 2, 223–230 (1984)PubMedGoogle Scholar
  25. [13]
    Hartroft, P.M., Sutherland, L.E., Hartroft, W.: Juxtaglomerular cells as the source of renin: further studies with the fluorescent antibody technique and the effect of passive transfer of antirenin. Canad. med. Ass. J. 90, 163–66 (1964)PubMedGoogle Scholar
  26. [14]
    Hsueh, W.A., Carlson, E.J., Dzau, V.J.: Characterization of inactive renin from human kidney and plasma: evidence of a renal source of circulating inactive renin. J. Clin. Invest. 71, 506–517 (1983)PubMedCentralPubMedGoogle Scholar
  27. [15]
    Itoh, S., Carretero, O.A., Murray, R.D.: Renin release from isolated afferent arterioles: Kidney Int. 27, 762–767 (1985)PubMedGoogle Scholar
  28. [16]
    Koletzky, R.J., Dluhy, R.G., Cheron, R.G., Williams, G.H.: Dietary chloride modifies renin release in normal humans. Amer. J. Physiol. 10, 361–63 (1981)Google Scholar
  29. [17]
    Kopp, U., Aurell, M., Nilsson, I.M., Ablad, B.: The role of beta1-adrenoceptors in the renin release to graded renal sympathetic nerve stimulation. Pflügers Arch. 387, 107–13 (1980)PubMedGoogle Scholar
  30. [18]
    Kotchen, T.A., Talwalkar, R.T., Kaul, K.: Identification of renin inhibitors in normal and uremic plasma: J. Lab. Clin. Med. 105, 286–293 (1985)PubMedGoogle Scholar
  31. [19]
    Lacasse, J., Ballak, M., Mercure, Ch. et al.: Immunocytochemical localization of renin in juxtaglomerular cells J. Histochem. Cytochem. 33, 323–332 (1985)PubMedGoogle Scholar
  32. [20]
    Luetscher, J.A., Kraemer, F.B., Wilson, D.M., Schwartz, H.C., Bryer-Ash, M.: Increased plasma inactive renin in diabetes mellitus. N. Engl. J. Med. 312, 1412–1417 (1985)PubMedGoogle Scholar
  33. [21]
    Nochy, D., Barres, D., Camilleri, J.P., Bariety, J., Corval P., Menard, J.: Abnormalities of renin-containing cells in human glomerular and vascular renal diseases. Kidney int. 23, 375–79 (1983)PubMedGoogle Scholar
  34. [22]
    Oliver, J.A., Sciacca, R.R.: Local Generation of Angiotensin II as a Mechanism of Regulation of Peripheral Vascular Tone in the Rat. J. Clin. Invest. 74, 1247–1251 (1984)PubMedCentralPubMedGoogle Scholar
  35. [23]
    Park, C.S., Han, D.S., Fray, J.C.S.: Calcium in the control of renin secretion: Cat+ influx as an inhibitory signal. Amer. J. Physiol. 9, 70–74 (1981)Google Scholar
  36. [24]
    Phat, V.N., Camilleri, J.P., Bariety, J., Galtier, M., Baviera, E., Corval, P., Menard, J.: Immunohistochemical characterization of renin-containing cells in the human juxtaglomerular apparatus during embryonal and fetal development. Lab. Invest. 45, 387–90 (1981)PubMedGoogle Scholar
  37. [25]
    Ploth, D.W., Roy, R.N.: Renin-angiotensin influence on tubuloglomerular feedback activity in the rat. Kidney int. 22, 114–21 (1982)Google Scholar
  38. [26]
    Ritz, E., Massry, S.G. (Vol. Eds.): Issues in Glomerulonephritis and renin-system (Renin-Angiotensin system), Contr. Nephrol. 43, Karger 1984Google Scholar
  39. [27]
    Ryan, G.B., Alcorn, D., Coghlan, J.P., Hill, P.A., Jacobs, R.: Ultrastructural morphology of granule release from juxtaglomerular myoepithelioid and peripolar cells. Kidney int. 22, Suppl. 12, S3 - S8 (1982)Google Scholar
  40. [28]
    Schölkens, B.A., Albus, U., Breipohl, G., Frühbeis, H., Knolle, J., Ruppert, R.: Computer graphics modelling of new Renin inhibitors: Naunyn-Schmiedeberg’s Arch. Pharmacol. 329, Suppl.: R 62 (1985)Google Scholar
  41. [29]
    Sealey, J.E., Atlas, S.A., Laragh, J.H.: Prorenin and other large molecular weight forms of renin: Endocrin. Rev. 1, 365–391 (1980)Google Scholar
  42. [30]
    Taugner, R., Hackenthal, E., Heimchen, U., Ganten, D., Kugler, P., Marin-Guez, M., Nobiling, R., Unger, Th., Lockwald, I., Keilbach, R.: The intrarenal renin-angiotensin system: an immunocytochemical study on the localization of renin, angiotensinogen, converting enzyme and the angiotensins in the kidney of mouse and rat. Klin. Wschr. 60, 1218–1222 (1982)PubMedGoogle Scholar
  43. [31]
    Taugner, R., Hackenthal, E., Nobiling, R., Harlacher, M., Reb, G.: The distribution of renin in the different segments of the renal arterial tree. Histochemistry 73, 75–88 (1981)PubMedGoogle Scholar
  44. [32]
    Taugner, R., Hackenthal, E., Ritz, E., Nobiling, R., Poulsen, K.: Immunocytochemistry of renin-angiotensin system: renin, angiotensin I, angiotensin II and converting enzyme in the kidney of mice, rats and tree shrews. Kidney int. 22, Suppl. 12, 33–43 (1982)Google Scholar
  45. [33]
    Taugner, R., Hackenthal, E., Inagami, T., Nobiling, R., Poulsen, K.: Vascular and tubular renin in the kidneys of mice. Histochemistry 75, 473–484 (1982)PubMedGoogle Scholar
  46. [34]
    Taugner, C., Poulsen, K., Taugner, R.: Immunocytochemical localization of renin in mouse kidney. Histochemistry 62, 19–27 (1979)PubMedGoogle Scholar
  47. [35]
    Tree, M., Szelke, M., Leckie, B. et al.: Renin inhibitors: their use in understanding the role of angiotensin II as a pressor hormone: J. Cardiovasc. Pharmacol. 7, (Suppl. 4) S49 - S52 (1985)PubMedGoogle Scholar
  48. [36]
    Witzgall, H., Lorenz, R., von Werder, K., Weber, P.C.: Dopamine reduces aldosterone and 18-hydroxycorticosterone response to angiotensin II in patients with essential low-renin hypertension and idiopathic hyperaldosteronism: Clin. Sci. 68, 291–299 (1985)PubMedGoogle Scholar
  49. [37]
    Zavagli, G., Aleotti, A., Farinelli, A.: Human renin granules: ultrastructural aspects. Nephron 33, 29–33 (1983)PubMedGoogle Scholar
  50. [1]
    Boomsma, F., DeBruyn, H.B., Derkx, F.H.M., Schalekamp, M.A.D.H.: Opposite effects of captopril on angiotensin I converting enzyme „activity” and „concentration“: relation between enzyme inhibition and long-term blood pressure response. Clin. Sci. 60, 491–98 (1981)PubMedGoogle Scholar
  51. [2]
    Erdös, E.G.: Enzymes that inactivate vasoactive peptides. In: Brodie, B.B., Gillette, J. (Eds.): Handbook of Experimental Pharmacology 28/2. Springer, Berlin—Heidelberg—New York 1971, pp. 620–53Google Scholar
  52. [3]
    Erdös, E.G.: Conversion of angiotensin I to angiotensin II. Amer. J. Med. 60, 749–59 (1976)PubMedGoogle Scholar
  53. [4]
    Forslund, T., Tikkanen, I., Fyhrquist, F.: Decrease of serum angiotensin converting enzyme activity after discontinuation of captopril treatment. Acta pharmacol. 53, 78–80 (1983)Google Scholar
  54. [5]
    Galler, M., Backenroth, R., Folkert, V.N., Schlöndorff, D.: Effects of converting enzyme inhibitors on prostaglandin synthesis by isolated glomeruli and aortic strips from rats: J. Pharmacol. Exp. Ther. 220, 23–28 (1982)PubMedGoogle Scholar
  55. [6]
    Giudicelli, J.F., Berdeaux, A., Edouard, A. et al.: The effect of enalapril on baroreceptor mediated reflex function in normotensive subjects: Br. J. clin. Pharmac. 20, 211–218 (1985)Google Scholar
  56. [7]
    Hall, E.R., Kato, J., Erdös, E.G., Robinson, C.J.G., Oshima, G.: Angiotensin I converting enzyme in the nephron. Life Sci. 18, 1299–1304 (1976)PubMedGoogle Scholar
  57. [8]
    Kelly, J.G., Doyle, G., Donohue, J. et al.: Pharmacokinetics of enalapril in normal subjects and patients with renal impairment: Brit. J. Clin. Pharm. 21, 63–69 (1986)PubMedGoogle Scholar
  58. [9]
    Kugler, P.: An angiotensin-degrading aminopeptidase in the rat kidney. Advanc. Anat. Embryol. Cell Biol. 76 (1982)Google Scholar
  59. [10]
    Kugler, P.: Histochemistry of angiotensinase A in the glomerulus and the juxtaglomerular apparatus. Kidney int. 22, 44–8 (1982)Google Scholar
  60. [11]
    Kugler, P.: Localization of aminopeptidase A (angiotensinase A) in the rat and mouse kidney. Histochemistry 72, 269–78 (1981)PubMedGoogle Scholar
  61. [12]
    Kugler., P.: Aminopeptidase A is angiotensinase A: quantitative histochemical studies on the kidney glomerulus. Histochemistry 74, 229–45 (1982)PubMedGoogle Scholar
  62. [13]
    Kugler, P., Wolf, G., Scherberich, J.E.: Histochemical demonstration of peptidases in the human kidney: Histochemistry 83, 337–341 (1985)PubMedGoogle Scholar
  63. [14]
    Ledoux, St., Gutowska, J., Garcia, R., Thibault, G., Cantin, M., Genest, J.: Immunohistochemical localization of tonin in rat salivary glands and kidney. Histochemistry 76, 329–39 (1982)PubMedGoogle Scholar
  64. [15]
    Meyer, T.W., Anderson, S., Rennke, H.G., Brenner, B.M.: Converting enzyme inhibitor therapy limits progressive glomerular injury in rats with renal insufficieny: Am. J. Med. 79, (suppl. 3C), 31–36 (1985)PubMedGoogle Scholar
  65. [16]
    Niarchos, A.P., Resnick, L.M., Weinstein, D.L., Laragh, J.H.: Angiotensin I converting enzyme activity in hypertension: Am. J. Med. 79, 435–444 (1985)PubMedGoogle Scholar
  66. [17]
    Nielsen, A.H., Knudsen, E., Kristensen, S.D.: Serum Angiotensin-converting enzyme increases during hemodialysis: Nephron 40, 100–103 (1985)PubMedGoogle Scholar
  67. [18]
    Packer, M.: Is the renin-angiotensin system really unnecessary in patients with severe chronic heart failure: the price we pay for interfering with evolution: J. Am. Coll. Cardiol. 6, 171 (1985)Google Scholar
  68. [19]
    Rumpf, K.W., Brat, A., Armstrong, V., Scheler, F.: Increased serum Angiotensin converting enzyme in end-stage renal disease: Nephron 40, 248–249 (1985)PubMedGoogle Scholar
  69. [20]
    Scherberich, J.E., Gauhl, C., Heinert, G., Mondorf, W., Schöppe, W.: Characterization and clinical significance of membrane-bound proteases from human kidney cortex. In: Heidland, A., Hörl, W.H. (Eds.): Proteases: Potential Role in Health and Disease. Plenum Publ. Comp., New York pp. 179–190 (1984)Google Scholar
  70. [21]
    Scherberich, J.E., Stuckardt, Cl., Wolf, G., et at.: Aminopeptidase A (Angiotensinase A) in urine of healthy subjects and patients with kidney diseases (in Vorbereitung)Google Scholar
  71. [22]
    Schölkens, B.A., Becker, R.H.A., Kaiser, J.: Cardiovascular and antihypertensive activities of the novel nonsulfhydryl converting enzyme inhibitor 2-N-(s)-1-ethoxycarbonyl-3phenylpropyl)-L-alanylazabicyclo-octane-carboxylic acid (Hoe 498): Arzneimittelforsch. 34, (II), 1417–1425 (1984)Google Scholar
  72. [23]
    Soffer, R.L.: Angiotensin converting enzyme and the regulation of vasoactive peptides. Ann. Rev. Biochem. 45, 73 (1976)PubMedGoogle Scholar
  73. [24]
    Stumpe, K.O.: Angiotensin-Conversions-Enzym-Hemmung: Direkte und indirekte renale Mechanismen. Klin. Wochenschr. 63, 897–906 (1985)PubMedGoogle Scholar
  74. [25]
    Taguma, Y., Kitamoto, Y., Futaki, G. et al.: Effect of captopril on heavy proteinuria in azotaemic diabetics: N. Engl. J. Med. 313, 1617–1620 (1985)PubMedGoogle Scholar
  75. [26]
    Taugner, R., Ganten, D.: The localization of converting enzyme in kidney vessels of the rat. Histochemistry 75, 191–201 (1982)PubMedGoogle Scholar
  76. [27]
    Unger, T., Ganten, D., Lang, R.E.: Pharmacology of converting enzyme inhibitors; new aspects: Clin. Exp. Hypertens (A), 5, 1333–1354 (1984)Google Scholar
  77. [28]
    Unger, T., Ganten, D., Lang, R.E., Schölkens, B.A.: Persistent tissue converting enzyme inhibition following chronic treatment with Hoe 498 and MK 421 in spontaneously hypertensive rats: J. Cardiovasc. Pharm. 7, 36–41 (1985)Google Scholar
  78. [29]
    Van Sande, M., Scharpe, S.L., Neels, H.M.: Multiple forms of angiotensin-converting enzyme in human tissue and fluids: J. Clin. Chem. Clin. Biochem. 23, 381–386 (1985)PubMedGoogle Scholar
  79. [1]
    Adams, D.H., Howie, A.J., Michael, J. et al.: Non-steroidal anti-inflammatory drugs and renal failure: Lancet I, 57–59 (1986)Google Scholar
  80. [2]
    Baud, L., Sraer, J., Perez, J. et al.: Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro. J. Clin. Invest. 76, 374–377 (1985)PubMedCentralPubMedGoogle Scholar
  81. [3]
    Berkowitz, B.A., Zabko-Potapovich, B., Valocik, R., Gleason, J.R.: Effects of leukotrienes on the vascular and blood pressure of different species. J. Pharmacol. Exp. Ther. 229, 105–112 (1984)PubMedGoogle Scholar
  82. [4]
    Blackshear, J.L., Spielmann, W.S., Knox, F.G., Romero, J.C.: Dissociation of renin release and renal vasodilatation by prostaglandin synthesis inhibitors. Amer. J. Physiol. 237, 20–4 (1979)Google Scholar
  83. [5]
    Buck, A.D., Sampson, W.F., Lote, D.J., Blacklock, N.J.: The influence of renal prostaglandins on glomerular filtration rate (GFR) and calcium excretion in urolithiasis. Brit. J. Urol. 53, 485 (1981)PubMedGoogle Scholar
  84. [6]
    Chaumet-Riffaud, P., Oudinet, J.-P., Sraer, J., Lajotte, C., Ardaillou, R.: Altered PGE2 and PGF2, production by glomeruli and papilla of sodium-depleted and sodium-loaded rats. Amer. J. Physiol. 241, 517–24 (1981)Google Scholar
  85. [7]
    Dunn, M.J., Hood, V.L.: Prostaglandins and the kidney. Amer. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 2), 169–84 (1977)Google Scholar
  86. [8]
    Feuerstein, G.: Leukotrienes and the cardiovascular system: Prostaglandins 27, 781–802 (1984)PubMedGoogle Scholar
  87. [9]
    Fisher, J.W.: Control of erythropoietin production. Proc. Soc. Exp. Biol. Med. 173, 289 (1983)PubMedGoogle Scholar
  88. [10]
    Frölich, J.C., Fejes-Toth, G.: Renal prostaglandins. Klin. Wschr. 60, 1155–64 (1982)PubMedGoogle Scholar
  89. [11]
    Frölich, J.C., Fejes-Toth, G.: Prostaglandins and the kidney (editorial). Lancet I, 343–45 (1981)Google Scholar
  90. [12]
    Hassid, A., Konieczkowdki, M., Dunn, M.I.: Prostaglandin synthesis by isolated rat kidney glomeruli. Proc. nat. Acad. Sci. (Wash.) 76, 1155–59 (1979)Google Scholar
  91. [13]
    Jelkmann, W., Kurtz, A., Forstermann et al.: Hypoxia enhances prostaglandin synthesis in renal mesangial cell cultures: Prostaglandins 30, 109–118 (1985)PubMedGoogle Scholar
  92. [14]
    Kreisberg, J.I., Karnovsky, M.J., Levine, L.: PG production by homogenous cultures of rat glomerular epithelial and mesangial cells. Kidney Int. 22, 355 (1982)PubMedGoogle Scholar
  93. [15]
    Kurtz, A., Jelkmann, W., Pfeilschifter, J., Bauer, C.: Prostaglandins are involved in the hypoxia stimulated erythropoietin production in cultured renal mesangial cells: Am. J. Physiol. (im Druck)Google Scholar
  94. [16]
    Lelcuk, S., Alexander, F., Kobzik, L., Valeri, C.R., Shepro, Hechtmann, H.B.: Prostacyclin and thromboxane A2 moderate postischaemic renal failure. Surgery 98, 207–212 (1985)PubMedGoogle Scholar
  95. [17]
    Levenson, D.J., Simmons, C.E., Brenner, A.: Arachidonic acid metabolism, prostaglandins and the kidney: Am. J. Med. 72, 354–374 (1982)PubMedGoogle Scholar
  96. [18]
    Llanos, E.A., Rahman, M.A., Dunn, M.J.: Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis: J. Clin. Invest. 76, 1355–1359 (1985)Google Scholar
  97. [19]
    Lifschitz, M.D.: Prostaglandins and renal blood flow: in vivo studies; Kidney Int. 19, 781 (1981)PubMedGoogle Scholar
  98. [20]
    Muirhead, E.E.: Antihypertensive function of the kidney. Arthur C. Corcoran Memorial Lecture. Hypertension 2, 444–64 (1980)PubMedGoogle Scholar
  99. [21]
    Nasjletti, A., Colina-Chourio, J.: Interaction of mineral corticoids, renal prostaglandins and the renal kallikrein-kinin system. Fed. Proc. 35, 189 (1979)Google Scholar
  100. [22]
    Ooi, Y.M., Weiss, M.A., Hsu, A., Ooi, B.S.: Mechanisms of suppression of mouse mesangial cell proliferation by macrophage supernatants: J. Immunol. 130, 1790–1795 (1983)PubMedGoogle Scholar
  101. [23]
    Patrono, C., Ciabattoni, G., Patrignani, P. et al.: Evidence for a renal origin of urinary thromboxane B2 in health and disease. In: Adv. Prostaglandins, Thromboxane and Leukotriene Res. Vol. 11 (B. Samuels et al. eds), Ravens Press N.Y. 1983Google Scholar
  102. [24]
    Petrulis, A.S., Aikaw, M., Dunn, M.J.: Prostaglandin and thromboxane synthesis by rat glomerular epithelial cells. Kidney int. 20 465–74 (1981)Google Scholar
  103. [25]
    Rubinger, D., Frishberg, Y., Eldor, A., Popovtzer, M.M.: The effect of suppression of prostaglandin synthesis on renal function in rats with intact and reduced renal mass: Prostaglandins 30, 651–668 (1985)PubMedGoogle Scholar
  104. [26]
    Scherer, B., Witzgall, H., Weber, P.C.: Prostaglandin excretion after furosemide in normal and low-renin essential hypertension: Klin. Wschr. 62, 777–782 (1984)PubMedGoogle Scholar
  105. [27]
    Secrest, R.J., Olsen, E.J., Chapnick: Leukotriene D4relaxes canine renal and superior mesenteric arteries: Circ. Res. 57, 323–329 (1985)PubMedGoogle Scholar
  106. [28]
    Smith, W.L., Graham-Bell, T.: Immunohistochemical localization of the prostaglandin-forming cyclooxygenase in renal cortex. Amer. J. Physiol. 235, 451–57 (1978)Google Scholar
  107. [29]
    Stahl, R.A., Paravicini, M., Schollmeyer, P.: Isolierte menschliche Glomeruli in vitro: Interaktion zwischen Prostaglandin-system and Angiotensin II. Nieren-and Hochdruckkrankheiten 12, 343 (Abstr.) (1983)Google Scholar
  108. [30]
    Stahl, R.A.K., Kudelka, S., Paravicini, M., Schollmeyer, P.: Prostaglandin and thromboxane formation in glomeruli from rats with reduced renal mass: Nephron. 42, 252–257 (1986)PubMedGoogle Scholar
  109. [31]
    Wagner, K., Neumayer, H.H., Schudrowitsch, L., Schultze, G., Molzahn, M.: Einfluß von Prostaglandin E2 auf Hämodynamik, glomeruläre Filtrationsrate und Exkretion. Untersuchungen an chronisch instrumentierten wachen Hunden. Nieren-und Hochdruckkrankheiten 12, 351 (abstr.) (1983)Google Scholar
  110. [32]
    Weber, P.C., Larsson, C., Anggard, D., Hamberg, M., Corey, E.J., Nicolaou, K.C., Samuelsson, B.: Stimulation of renin release from rabbit renal cortex by arachidonic acid and prostaglandin endoperoxides. Circulat. Res. 39, 868 (1976)Google Scholar
  111. [33]
    Weber, P.C., Larsson, C., Scherer, B.: Prostaglandin E2–9- ketoreductase as a mediator of salt intake-related prostaglandin-renin interaction. Nature 266, 65 (1977)Google Scholar
  112. [34]
    Weber, P.C., Mann, K.: Gewebshormone der Niere. Internist 18, 529–37 (1977)PubMedGoogle Scholar
  113. [35]
    Weber, P.C., Scherer, B., Siess, W., Held, E.: Renale und vaskuläre Prostaglandine. Verh. Dtsch. Ges. inn. Med. 1500–8 (1979)Google Scholar
  114. [36]
    Weber, P.C., Scherer, B., Siess, W., Held, E., Schnermann, J.: Formation and action of prostaglandins in the kidney. Klin. Wschr. 57, 1021–29 (1979)PubMedGoogle Scholar
  115. [37]
    Weber, P.C., Siess, W.: Influence of renal prostaglandins on renin release. In: Mandat, A.K., Bohmann, S.O. (Eds.): The Renal Papilla and Hypertension. 1980, pp. 209–30Google Scholar
  116. [38]
    Weber, P.C., Siess, W.: Interactions of renal prostaglandins with the renin-angiotensin system. Pharmacol. and Ther. 15, 321–37 (1982)Google Scholar
  117. [39]
    Weber, P.C., Siess, W., Scherer, B.: Vaskuläre, thrombozytäre und renale Prostaglandine. Klin. Wschr. 57, 425–44 (1979)PubMedGoogle Scholar
  118. [40]
    Weber, P.C., Siess, W., Scherer, B., Briggs, J.P., Schnermann, J.: Prostaglandins and the renal circulation. In: Herman, A.G., Vanhoutte, P.M., Denolin, H., Goossens, A. (Eds.): Cardiocascular Pharmacology of the Prostaglandins. Raven Press, New York 1982Google Scholar
  119. [41]
    Wallenburg, H.C.S. et al.: Low-dose aspirin prevents pregancy induced hypertension and pre-eclampsia in angiotensin-sensitive primigravidae: Lancet I, 1–3 (1986)Google Scholar
  120. [42]
    Wilcox, C.S., Roddis, S., Peart, W.S., Gordon, D., Lewis, G.P.: Intrarenal prostaglandin release: effects of arachidonic acid and hyperchloraemia: Kidney Int. 28, 43–50 (1985)PubMedGoogle Scholar
  121. [43]
    Witzgall, H., Hirsch, F., Scherer, B., Weber, P.C.: Acute haemodynamic and hormonal effects of captopril are diminished by indomethacin: Clin. Scie. 62, 611–615 (1982)Google Scholar
  122. [44]
    Zimmerhackl, B., Robertson, C.R., Jamison, R.L.: The micro-circulation in the renal medulla: Circ. Res. 57, 657–667 (1985)PubMedGoogle Scholar
  123. [1]
    Bayliss, C., Deen, W.M., Myers, B.D., Brenner, B.M.: Effect of some vasodilator drugs on transcapillary fluid exchange in the renal cortex: Am. J. Physiol. 230, 1148–1158 (1976)Google Scholar
  124. [2]
    Brazy, P.C., Trellis, D.-R., Klotman, P.E.: Bradykinin stimulation of oxidative metabolism in renal cortical tubules from rabbit: J. Clin. Invest. 76, 1812–1818 (1985)PubMedCentralPubMedGoogle Scholar
  125. [3]
    Cantin, M., Garcia, R., Thibault, G., Ballak, M., Lacasse, J., Chapeau, C., Richard, G., Genest, J.: Immunocytochemical localization of rat renal kallikrein: a light and electron microscopic study. J. Histochem. Cytochem. (1982)Google Scholar
  126. [4]
    Carrettero, O.A., Scicli, A.G.: The renal kallikrein-kinin system: Am. J. Physiol. 238, F 247–F 255 (1982)Google Scholar
  127. [5]
    Distler, A., Wolff, H.P.: Renales Kallikrein-Kinin-System and Blutdruckregulation. Klin. Wschr. 57, 1037–45 (1979)PubMedGoogle Scholar
  128. [6).
    Erdös, E.G.: Kininases, In: Handbook of exp. Pharmacol. (ed. Erdös), S. 25, Bradykinin, kallidin and kallikrein, pp. 428–487 (1979)Google Scholar
  129. [7]
    Honda, M., Nagashima, Y., Hatano, M. et al.: Effects of purified hog pancreatic kallikrein on the Kinin-Prostaglandin system and renin-angiotensin-aldosterone system: Nephron, 42, 34–38 (1985)Google Scholar
  130. [8]
    Kojima, S., Ito, K.: Effect of protein intake on blood pressure, sodium metabolism, and urinary kallikrein excretion in salt-loaded rats: Nephron 42, 78–82 (1986)PubMedGoogle Scholar
  131. [9]
    Levinsky, N.G.: The renal kallikrein-kinin system. Circulat. Res. 44, 441–51 (1979)PubMedGoogle Scholar
  132. [10]
    Mackay, Z.G., Macnicol, A.M., Smith, H.J. et al.: Intrinsic sympathicomimetic activity of cardioselective (1-adrenoceptor blockers and effects on renal function: Br. J. clin. Pharmac. 20, 197–203 (1985)Google Scholar
  133. [11]
    Meyer-Lehnert, H., Stenitzer, A., Stoll, J., Kramer, H.J.: Auswirkungen der Kallikrein-Inhibition durch Aprotinin auf das Konzentrationsvermögen der Niere. Nieren-and Hochdruckkrankheiten 12, 346 (Abstr.) (1983)Google Scholar
  134. [12]
    McGiff, J.C.: Interactions of prostaglandins with the kallikreinkinin and renin-angiotensin system. Clin. Sci. 59, 1055–65 (1980)Google Scholar
  135. [13]
    Müller-Esterl, W., Fritz, H.: Human kininogens and their function in the kallikrein-kinin systems; In: Proteases, (Eds. Heidland, Hörl), pp. 41–62, Plenum Press 1984Google Scholar
  136. [14]
    Misumi, J., Alhenc-Gelas, F., Marre, F. et al.: Regulation of kallikrein-and renin release by isolated perfused rat kidney: Kidney Int. 24, 58–65 (1983)PubMedGoogle Scholar
  137. [15]
    Nasjeletti, A., Malik, K.: The renal kallikrein-kinin and prostaglandin systems interaction: Ann. Rev. Physiol. 43, pp. 597 (1981)Google Scholar
  138. [16]
    Overlack, A., Stumpe, K.O., Zywzock, W. et al.: Defect of kallikrein-kinin system in essential hypertension and reduction of blood pressure by orally given kallikrein: Adv. Exp. Med. Biol. 1208; pp. 539 (1979)Google Scholar
  139. [17]
    Röckel, A., Heidland, A.: Kallikrein-kinin system and hypertension. Contrib. Nephrol. 23, 105–24 (1980)PubMedGoogle Scholar
  140. [18]
    Scherberich, J.E., Mondorf, W.: Effect of a protease inhibitor (aprotinin) on kidney brush border membrane associated alaaminopeptidase: Arzneimittelforsch. (Drug. Res.), 30, 487–491 (1980)Google Scholar
  141. [19]
    Scherberich, J.E., Gauhl, C., Heinen, G., Mondorf, W., Schoeppe, W.: Characterization and clinical significance of membrane bound proteases from human kidney cortex: In: Proteases, potential role in health and disease (Eds. Heidland, Hörl), 179–190, Plenum Press, 1984Google Scholar
  142. [20]
    Spragg, J., Denney, D.L., Tilney, N.L., Austen, K.F.: Kallikrein excretion in renal transplant recipients and in uninephrectomized donors: Kidney Int. 28, 75–81 (1985)PubMedGoogle Scholar
  143. [21]
    Vio, C. P., Figueroa, C.D.: Subcellular localization of renal kallikrein by ultrastructural immuncytochemistry: Kidney Int. 28, 36–42 (1985)PubMedGoogle Scholar
  144. [22]
    Werle, E., Vogel, R.: Über die Freisetzung einer Kallikreinartigen Substanz aus Extrakten verschiedener Organe Arch. Int. Pharmacodyn. Ther. 131, 257–261 (1961)Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1986

Authors and Affiliations

  • A. Werner Mondorf
    • 1
  • Jürgen E. Scherberich
    • 2
  1. 1.Klinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland
  2. 2.Abt. Nephrologie; OA am Zentrum der Inneren MedizinKlinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland

Personalised recommendations