Skip to main content

Mutual influence on collagen synthesis and proliferation by TGF-β1 and PDGF-A/B in arterial smooth muscle cells

Gegenseitige Beeinflussung der Proliferation und Kollagensynthese durch TGF-β1 und PDGF-A/B bei glatten Muskelzellen

  • Chapter
Diätetik und Arteriosklerose
  • 22 Accesses

Abstract

Atherogenesis is characterized by an increased proliferation of arterial smooth muscle cells (SMCs) and extensive deposition of extracellular matrix proteins, especially collagens. These pathological events may be a consequence of modulated SMC behavior, possibly induced by an imbalance of synergistically acting growth factors, which are released from platelets, T-lymphocytes and monocytes/macrophages.

We examined synergistic effects of PDGF-A/B and TGF-β1 on protein synthesis, collagen production and proliferation capacity in enzymatically isolated SMCs from the aortic media of young swine. Proliferation of subconfluent growing SMCs was determined by [3H]-thymidine uptake, cell counting and cell cycle determinations. To measure DNA synthesis, SMCs were incubated for 24 h with 5 ng/ml PDGF-A/B together with various TGF-β1 concentrations (0.01 ng/ml up to 1 ng/ml) in medium containing 0,5% serum and 1 µCi/ml [3H]-thymidine. Samples were determined as TCA insoluble products in a liquid scintillation counter. To measure cell replication, SMCs were incubated with growth factors for 48 h without radioactive labeling and the cells were counted with a Schärfe cell counting system CASY 1. Cell cycle determinations of propidium iodide labeled nuclei were performed with a FACScan after an incubation period with growth factors of 24 h. TGF-β1 downregulates in a dose-dependent manner the PDGFA/B induced increase of SMC proliferation, yielding a maximal 2.9-fold inhibition of DNA synthesis corresponding to a reduction of cells being in S-phase from 23.3% to 9.5% and a reduction of the cell numbers to an amount found in controls.

To measure protein/collagen synthesis, SMCs were cultured as confluent monolayers and preincubated for 24 h with 5 ng/ml PDGF-A/B in combination with 1 ng/ml TGF--β1 in medium containing 1% serum. Cells were further incubated with growth factors for 24 h in the presence of [14C]-proline. For RNA preparation, cells were isolated after the preincubation period. TGF-ß1 induced a 1.8-fold increase in total proteins produced, and in addition a specific 1.9-fold enhancement in the proportion of collagen from 10% to 19%. The corresponding level of collagen type I mRNA was also found being 1.8-fold increased by TGFß1. PDGF-A/B alone had no influence on the increased synthesis of total proteins however in combination with TGF-01, the specifically enhanced collagen proportion and mRNA value was reduced to those presented by control cells. We conclude from these results that PDGF-A/B and TGF-f31 exhibit mutual interactions for controlling and regulating proliferation and collagen synthesis of SMCs.

Zusammenfassung

Die Atherogenese ist im wesentlichen durch eine stark erhöhte Proliferation glatter Muskelzellen und eine extensive, hauptsächlich aus Kollagenen bestehende Produktion extrazellulärer Matrixproteine gekennzeichnet [16, 19]. Diese pathologischen Veränderungen scheinen aus einem, potentiell reversiblen, modulierbaren Verhalten der glatten Muskelzellen zu resultieren. Wachstumsfaktoren, die ein breites Spektrum biologischer Aktivitäten auf Zellen ausüben und von Thrombozyten, T-Lymphozyten oder Monozyten/Makrophagen sezerniert werden können, mag daher eine Rolle bei der Entstehung derartiger Ereignisse zuzuschreiben sein. Die Charakteristika und Mechanismen solcher, zum Teil synergistisch und interagierend wirkender, mitogener Faktoren sind bis heute noch weitgehend unbekannt und bedürfen einer detaillierten Aufklärung. Innerhalb einer Vielzahl von Faktoren haben Platelet Derived Growth Factors (PDGF) und Transforming Growth Factors (TGF) in letzter Zeit große Aufmerksamkeit erfahren, da sie das Zellverhalten mesenchymaler Zellen entscheidend beeinflussen können. Platelet Derived Growth Factor ist ein aus zwei verschiedenen Polypeptidketten (A- und B-Ketten) zusammengesetztes, 30 kDa schweres Protein und kann bei Zellen, die einen geeigneten Rezeptor für diesen Faktor besitzen, eine Erhöhung der metabolischen, chemotaktischen oder proliferativen Aktivität induzieren [18]. Transforming Growth Faktor-ß, ist ein homodimäres Polypeptid mit einem Molekulargewicht von 25 kDa und beeinflußt Zelldifferenzierungsprozesse in einem ebenso hohem Maße wie PDGF. So sind für TGF-β, wachstumsregulierende und matrixsynthesemodulierende Einflüsse beschrieben worden [20]. Wachstumsfaktoren scheinen daher auch in einem nicht unerheblichen Maße an der Pathogenese der Arteriosklerose mitbeteiligt zu sein. Es ist jedoch eher unwahrscheinlich, daß die Regulation zellulärer Differenzierungsprozesse dem Einfluß nur eines Signalmoleküles unterliegt, da für TGF-ß und Epidermal Growth Factor (EGF) oder PDGF und TGF-ß kürzlich Interaktionen und Synergismen in bezug auf ihre chemotaktische, migrations- und proliferationsfördernde Wirkung publiziert worden sind [1, 12, 15]. Diese Ergebnisse legen den Schluß nahe, daß für die Regulation ein ausbalanciertes, komplexes Zusammenspiel mehrerer, gleichzeitig vorhandener Faktoren entscheidend ist. Aus diesem Grunde erschien es uns sinnvoll, den Einfluß von kombinierter TGF-131- und PDGF-A/B-Gabe auf

  1. 1.

    die Protein- und Kollagensynthese und

  2. 2.

    auf die Desoxyribonukleinsäure(DNA)-Synthese und Zellteilungsfähigkeit kultivierter glatter Muskelzellen zu untersuchen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Adelmann-Grill BC, Wach F, Cully Z, Hein R, Krieg T. Chemotactic migration of normal dermal fibroblasts towards epidermal growth factor and its modulation by platelet derived growth factor and transforming growth factor beta. Eur J Cell Biol 1990; 51: 322–326.

    PubMed  CAS  Google Scholar 

  2. Chambley-Campbell JH, Campbell GR, Ross R. Phenotype dependent response of cultured aortic smooth muscle cells to serum mitogens. Eur J Cell Biol 1981; 89: 379–383.

    Article  Google Scholar 

  3. Chiou WJ, Bonin PD, Harris PKW, Carter DB, Singh JP. Platelet derived growth factor induces interleukin-1 receptor gene expression in Balb/c 3T3 fibroblasts. J Biol Chem 1989; 264: 21442–21445.

    PubMed  CAS  Google Scholar 

  4. Chomczynski P, Sacchi N. Single step method of RNA isolation by acidic guanidinium isothiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159

    Article  PubMed  CAS  Google Scholar 

  5. Graham MF, Bryson D, Diegelmann RF. Transforming growth factor-p1 selectively augments collagen synthesis by human intestinal smooth muscle cells. Gastroenterology 1990; 99: 447–453.

    PubMed  CAS  Google Scholar 

  6. Gronwald RGK, Seifert RA, Bowen-Pope DF. Differential regulation of expression of two platelet derived growth factor receptor subunits by transforming growth factor-ß. J Biol Chem 1989; 264: 8120–8125.

    PubMed  CAS  Google Scholar 

  7. Kamijo R, Takeda K, Nagumo M, Konno K. Suppression of TNF-stimulated proliferation of diploid fibroblasts and TNF-induced cytotoxicity against transformed fibroblasts by TGF-1. Biochem Biophys Res Commun 1989; 158: 155–162.

    Article  PubMed  CAS  Google Scholar 

  8. Kahari VM, Chen YQ, Su MN, Ramirez F, Uitto J. Tumor necrosis factor-a and inferferongamma suppress the activation of human type I collagen gene expression by transforming growth factor-f31. J Clin Invest 1990; 86: 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  9. Kim KJ, Abrahams J, Alphonso M, Pearce M, Thornbecke GJ, Palladino MA. Role of endogenously produced interleukin-6 as a second signal in murine monocyte proliferation induced by multiple cytokines: regulatory effects of transforming growth factor-P1. Cell Immunol 1990; 131: 261–271.

    Article  PubMed  CAS  Google Scholar 

  10. Krieg T, Hörlein D, Wiestner M, Müller PK. Aminoterminal extension peptides from type I procollagen normalize excessive collagen synthesis of scleroderma fibroblasts. Arch Dermatol Res 1978; 236: 171–180.

    Article  Google Scholar 

  11. Majack RA, Majesky MW, Goodmann LV. Role of PDGF-A-expression in the control of vascular smoothe muscle cell growth by transforming growth factor-ß. J Cell Biol 1990; 111: 239–247.

    Article  PubMed  CAS  Google Scholar 

  12. Massague J. Transforming growth factor-13 modulates the high-affinity receptors for epidermal growth factor and transforming growth factor-a. J Cell Biol 1985; 100: 1508–1514.

    Article  PubMed  CAS  Google Scholar 

  13. Nusgens BV, Merill C, Lapiere CM, Bell E. Collagen biosynthesis by cells in atissue equivalent matrix in vitro. Coll Rel Res 1984; 4: 351–364.

    Article  CAS  Google Scholar 

  14. Redini F, Galera P, Mauviel A, Loyau G, Pujol JP. Transforming growth factor-I3 stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS 1988; 234: 172–176.

    Article  CAS  Google Scholar 

  15. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 1981; 78: 5339–5343.

    Article  PubMed  CAS  Google Scholar 

  16. Ross R. The pathogenesis of atherosclerosis: an update. N Engl J Med 1986; 314: 488–500.

    Article  PubMed  CAS  Google Scholar 

  17. Ross R, Raines EW, Bowden-Pope DF. The platelet derived growth-factor. Cell 1986; 46: 155169.

    Google Scholar 

  18. Ross R, Bowden-Pope DF, Raines EW. Platelet derived growht factor and its role in health and disease. Philos Trans R Soc Lond [Biol] 1990; 327: 155–169.

    Article  CAS  Google Scholar 

  19. Schwarz SM. Cellular proliferation in atherosclerosis and hypertension. Proc Soc Exp Biol Med 1983; 173: 1–13.

    Google Scholar 

  20. Sporn MB, Roberts AB, Wakefield LM, DE CROMBRUGGHE B. Some recent advances in the chemistry and biology of transforming growth factor-ß. J Cell Biol 1987; 105: 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  21. Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor-ß (TGF-ß) causes a persistent increase of steady state amounts of type I and type Ill collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 1987; 247: 597–604.

    PubMed  CAS  Google Scholar 

  22. Chu ML, Meyers JC, Bernard MP, Ding JF, Ramirez F. Cloning and characterisation of five overlapping cDNAs specific for the human pro a, (I) collagen chain. Nucleic Acids Res 1982; 10: 25–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Falken, U., Schlumberger, W., Thie, M., Robeneck, H. (1993). Mutual influence on collagen synthesis and proliferation by TGF-β1 and PDGF-A/B in arterial smooth muscle cells. In: Heinle, H., Schulte, H., Schaefer, H.E. (eds) Diätetik und Arteriosklerose. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-01942-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-01942-8_45

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-01943-5

  • Online ISBN: 978-3-663-01942-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics