Skip to main content

Continuous Deposits of the Ries Crater, Germany: Sedimentological and Micropaleontological Investigations of NASA Drill Core D

  • Chapter
Research in Terrestrial Impact Structures

Part of the book series: Earth Evolution Sciences ((EES))

Abstract

NASA drill core D was taken about 25 km (2 crater radii) south of the center of the Ries crater in Southern Germany at 10°27’02”E/48°40’44”N. It penetrated 52.3 m of the “Bunte Breccia” continuous deposits of the Ries crater, and 2.7 m of autochthonous Tertiary “Obere Süßwassermolasse” sediments, terminating in Tertiary “Obere Meeres-molasse” sediments at a depth of 62.7 m. The Bunte Breccia consists of lithic fragments derived from the crater cavity (crystalline basement, Triassic and Jurassic sediments) and from local material outside the actual crater rim (Tertiary freshwater and marine sediments). These clasts are embedded in four different types of a fine-grained groundmass made up of sands and clays. More than 4500 clasts > 2 mm in the Bunte Breccia were assigned to their stratigraphic provenance. Clasts 2–28 mm consist predominantly of crater derived material, while clasts 28–200 mm and > 200 mm are dominated by lithologies derived from outside the crater cavity (local material). The population of crater derived clasts of all size fractions is dominated by lithic clasts from the uppermost strati-graphic levels. A comparison of grain size, heavy mineral, carbonate content, and micro-paleontological data of the groundmass with those of locally derived lithic clasts revealed that approximately 90 vol. % of the groundmass of the polymict breccia (grain size < 2 mm) consist of locally derived clastic sediments and only about 10 vol. % are crater derived. The breccia emplacement was a highly turbulent process which involved stripping of the local substrate as well as vertical and horizontal transport and intimate mixing of crater and locally derived materials. The high amount of locally derived material is predicted by the hypothesis of secondary cratering and associated mass wasting and is not compatible with a roll-and-glide mechanism of ejecta transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bettenstaedt, F., H. Fahrion, H. Hiltermann, and W. Wick, 1962: Tertiär Norddeutschlands (Abschn. B 9), in: Leitfossilien der Mikropaläontologie, Berlin, 339–378.

    Google Scholar 

  • Birzer, F., 1969: Molasse und Ries-Schutt im westlichen Teil der Südlichen Frankenalb. Geol. Bl. NO-Bayern 19, 1–28.

    Google Scholar 

  • Bolten, R. and D. Müller, 1969: Das Tertiär im Nördlinger Ries und in seiner Umgebung. Geologica Bavarica 61, 87–130.

    Google Scholar 

  • Brestenska, E., 1974: Die Foraminiferen des Sarmatien s. str., Chronostratigraphie und Neostratotypen, Miozän M 5, IV. Bratislava, 243–270.

    Google Scholar 

  • Chao, E.C.T., 1976: Mineral-Produced High-Pressure Striae and Clay Polish: Key Evidence for Non-ballistic Transport of Ejecta from Ries Crater. Science 194, 615–618.

    Google Scholar 

  • Chao, E.C.T., 1977: The Ries Crater of Southern Germany. A Model for Large Basins on Planetary Surfaces. Geol. Jb. A 43, 81 p.

    Google Scholar 

  • Chao, E.C.T., R. Hüttner, and H. Schmidt-Kaler, 1977: Vertical Section of Ries Sedimentary Ejecta Blanket as Revealed by 1976 Drill Cores form Otting and Itzing (abstract). Lunar Science VIII, Lunar and Planetary Institute, Houston, 163–165.

    Google Scholar 

  • Chao, E.C.T., R. Hüttner, and H. Schmidt-Kaler, 1978: Principal Exposures of the Ries Meteorite Crater in Southern Germany. Description, photographic documentation and interpretation. Bayer. Geol. Landesamt, München.

    Google Scholar 

  • Cicha, I., I. Zapletalova, A. Papp, J. Ctyroka, and R. Lehotayova, 1971: Die Foraminiferen der Eggen-burger Schichtengruppe (incl. Arcellinida), Chronostratigraphie und Neostratotypen, Miozän M 1, II. Bratislava, 234–355.

    Google Scholar 

  • Cicha, I., F. Rögl, J. Ctyroka, I. Zapletalova, and A. Papp, 1973: Die Foraminiferen des Ottnangien, Chronostratigraphie und Neostratotypen, Miozän M 2, III. Bratislava, 297–355.

    Google Scholar 

  • Cushman, J.A., 1931: The Foraminifera of the Atlantic Ocean: Part 8. Bull. U.S. Natl. Mus. 104, 1–179.

    Google Scholar 

  • Dam, A. ten and T. Reinhold, 1941a: Die stratigraphische Gliederung des niederländischen Pliozäns/ Pleistozäns nach Foraminiferen. Meded. geol. Sticht., Ser. C-V, 1, 66 p.

    Google Scholar 

  • Darn, A. ten and T. Reinhold, 1941b: Nonionidea as Tertiary index-foraminifera. Geol. en Mijnb., N.S. 3, 6, 209–212.

    Google Scholar 

  • Folk, R.L. and W.C. Ward, 1957: Brazos River Bar: A Study in the significance of Grain Size Parameters. J. Sediment. Petrol. 24, 3–26.

    Google Scholar 

  • Gall, H., 1971: Geologische Karte von Bayern 1:25 000, Erläuterungen zum Blatt Nr. 7328 Wittislingen. Bayerisches Geologisches Landesamt, München.

    Google Scholar 

  • Gall, H., 1974: Neue Daten zum Verlauf der Klifflinie der Oberen Meeresmolasse (Helvet) im südlichen Vorries. Mitt. Bayer. Staatssamml. Paläont. hist. Geologie 14, 81–101.

    Google Scholar 

  • Gasse, W., 1981: Die Tertiären Foraminiferen der NASA-Forschungsbohrung Demmingen (SW-Vorries). Diploma thesis, University of Münster, Münster.

    Google Scholar 

  • Graup, G., 1978: Das Kristallin im Nördlinger Ries, Petrographische Zusammensetzung und Auswurfmechanismus der kristallinen Trümmermassen, Struktur des kristallinen Untergrundes und Beziehungen zum Moldanubikum. Enke Verlag, Stuttgart, 190 p.

    Google Scholar 

  • Hageman, J., 1979: Benthic foraminiferal assemblages from Plio-Pleistocene open bay to lagoonal sediments of the Western Peloponnesus (Greece). Utrecht micropaleont. Bull., 20, 171 p.

    Google Scholar 

  • Hagn, H., 1981: Die Bayerischen Alpen und ihr Vorland in mikropalänontologischer Sicht, Geologica Bavarica 82, 408 p.

    Google Scholar 

  • Hansen, H.J. and F. Roegl, 1980: What is Nonion? Problems involving foraminiferal genera described by Montfort, 1808 and the type species of Fichtel and Moll, 1798. J. Foram. Res. 10, 3, 173–179.

    Article  Google Scholar 

  • Hartmann, G., 1963: Zur Morphologie und Ökologie rezenter Ostracoden und deren Bedeutung bei dçr Unterscheidung mariner und nichtmariner Sedimente. Fortschr. Geol. Rheinl. Westf. 10, 67–80.

    Google Scholar 

  • Kiderlen, H., 1931: Beiträge zur Stratigraphie und Paläogeographie des süddeutschen Tertiärs. N. Jb. Min. Geol. Paläont., Beil. Bd. 66, Abt. B, 215–384.

    Google Scholar 

  • Hiltermann H 1949. Klaccifikarion der natürlichen Brackwässer. Erdöl und Kohle 2, 4–8.

    Google Scholar 

  • Hörz, F. and G.S. Banholzer, 1980: Deep seated target materials in the continuous deposits of the Ries Crater, Germany. Proc. Conf. Lunar Highlands Crust (Papike, J.J. and R.B., Merrill, Eds.). Pergamon Press, New York, 211–231.

    Google Scholar 

  • Hörz, F. and R. Ostertag, 1979: The transient cavity of the Ries crater, Germany (abstract). Lunar Planet. Sci. X, Lunar and Planetary Institute, Houston, 570–572.

    Google Scholar 

  • Hörz, F., H. Gall, R. Hüttner, and V.R. Oberbeck, 1977: Shallow Drilling in the “Bunte Breccia” Impact Deposits, Ries Crater, Germany. In: Impact and Explosion Cratering ( Roddy, D.J., R.O. Pepin and R.B. Merrill, eds.). Pergamon Press, New York, 425–448.

    Google Scholar 

  • Hörz, F., R. Ostertag, and D.A. Rainey, 1983: Bunte Breccia of the Ries: Continuous deposits of large impact craters. Rev. Geophys. Space Phys. 21, 1667–1725.

    Google Scholar 

  • Hüttner, R., 1961: Geologischer Bau und Landschaftsgeschichte des östlichen Härtsfeldes (Schwäbische Alb). Jh. geol. Landesamt Baden-Württemberg, 4, 49–125.

    Google Scholar 

  • Köhler, H., G. Graup, P. Horn, and D. Müller-Sohnius, 1981: Rb-Sr-Mineralalter aus der Forschungsbohrung Nördlingen 1973 (abstract). Fortschr. Miner. 59, 93–94.

    Google Scholar 

  • Lemcke, K., W. v. Engelhardt, and H. Füchtbauer, 1953: Geologische und sedimentpetrographische Untersuchungen im Westteil der ungefalteten Molasse des süddeutschen Alpenvorlandes. Beih. Geol. Jb. 11.

    Google Scholar 

  • Loeblich, A.R. and H. Tappan, 1964: Treatise on Invertebrate Paleontology C 2. Lawrence, Kansas, 2, 900 p.

    Google Scholar 

  • Morrison, R.H. and V.R. Oberbeck, 1978: A Composition and Thickness Model for Lunar Impact Crater and Basin Deposits. Proc. Lunar Sci. Conf. 9th, 3763–3785.

    Google Scholar 

  • Oberbeck, V.R., 1975. The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy. Rev. Geophys. and Space Phys. 13, 337–362.

    Google Scholar 

  • Oertli, J., 1963: Fossile Ostracoden als Milieuindikatoren. Fortschr. Geol. Rheinl. Westf. 10, 53–66.

    Google Scholar 

  • Papp, A., 1963: Die biostratigraphische Gliederung des Neogens im Wiener Becken. Mitt. geol. Ges. Wien 56, 225–317.

    Google Scholar 

  • Pohl, J., D. Stöffler, H. Gall, and K. Ernstson, 1977: The Ries Impact crater. In: Impact and Explosion Cratering ( Roddy, D.J., R.O. Pepin, and R.B. Merrill, eds.). Pergamon Press, New York, 343–404.

    Google Scholar 

  • Pokorny, V., 1958: Grundzüge der zoologischen Mikropaläontologie 1 + 2. Berlin.

    Google Scholar 

  • Roddy, D.J., J.M. Boyce, G.W. Colton, and A.L. Dial, 1975: Meteor Crater, Arizona, Rim Drilling with Thickness, Structural Uplift, Diameter, Depth, Volume, and Mass Balance Calculations. Proc. Lunar Sci. Conf. 6th, 2621–2644.

    Google Scholar 

  • Salger, M. and H. Schmidt-Kaler, 1973: Sedimentologische Untersuchungen im Lias von Altdorf bei Nürnberg (fränkische Alb). Geologica Bavarica 67, 162–168.

    Google Scholar 

  • Salger, M. and H. Schmidt-Kaler, 1974: Sedimentologische Untersuchung im unteren Lias anhand der Kernbohrung Ettenstatt nordöstlich von Weissenburg in Bayern. Geol. Bl. NO-Bayern 24, 191–194.

    Google Scholar 

  • Schetelig, K., 1962: Geologische Untersuchungen im Ries. Das Gebiet der Blätter Donauwörth und Genderkingen. Geologica Bavarica 47, 98 p.

    Google Scholar 

  • Schmeer, D., 1955: Sedimentpetrographische Beobachtungen aus der Oberen Süßwassermolasse im Bereich von Freising bis Landshut. Z. deutsch. Geol. Ges. 105, (1953), 496–516.

    Google Scholar 

  • Schmidt-Kaler, H., 1969a: Versuch einer Profildarstellung für das Rieszentrum vor der Kraterbildung. Geologica Bavarica 61, 38–40.

    Google Scholar 

  • Schmidt-Kaler, H., 1969b: Keuper und Jura in der Tiefbohrung Riedenburg. Geol. Bl. NO-Bayern 19, 97–112.

    Google Scholar 

  • Schneider, W., 1971: Petrologische Untersuchungen der Bunten Breccie im Nördlinger Ries. N. Jb. Miner. Abh. 114, 136–180.

    Google Scholar 

  • Schnitker, D., 1974: Ecotypic variation in Ammonia becarii (Linné). J. foram. Ges. 4, 217–223.

    Article  Google Scholar 

  • Schnitzer, W.A., 1953: Sedimentpetrographische Untersuchungen an den postjurassischen Uberdek-kungsbildungen der mittleren südlichen Frankenalb. Geol. Bl. NO-Bayern 3, 121–134.

    Google Scholar 

  • Schröder, B., 1962: Schwermineralführung und Paläogeographie des Doggersandsteins in Nordbayern. Erlanger geol. Abh. 42, 3–29.

    Google Scholar 

  • Steininger, F., F. Rögl, and E. Martini, 1976: Current Oligocene/Miocene biostratigraphic concept of the Central Parathetys (Middle Europe). Newslett. Stratigr., Berlin 4, 174–202.

    Google Scholar 

  • Stöffler, D., 1971: Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. J. Geophys. Res. 76, 5541–5551.

    Google Scholar 

  • Stöffler, D., D.E. Gault, J. Wedekind, and G. Polkowski, 1975: Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta. J. Geophys. Res. 80, 4062–4077

    Article  Google Scholar 

  • Tollmann, A., 1957: Die Mikrofauna des Burdigal von Eggenburg (Niederösterreich). Sitzungsber. österr. Akad. Wiss., math.-natw. KI., Wien, 166, 165–213.

    Google Scholar 

  • Woorthuysen, J.H. van and K. Toering, 1969: Distribution,quantitative des foraminifères neogènes et quarternaires aux environs d’Anvers. Meded. Rijks geol. Dienst, N.S., Haarlem, 20, 93–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean Pohl

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Ostertag, R., Gasse, W. (1987). Continuous Deposits of the Ries Crater, Germany: Sedimentological and Micropaleontological Investigations of NASA Drill Core D. In: Pohl, J. (eds) Research in Terrestrial Impact Structures. Earth Evolution Sciences. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-01889-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-01889-6_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-01891-9

  • Online ISBN: 978-3-663-01889-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics