Skip to main content

Katalyse durch Hämoproteine: Elektronenübertragung, Sauerstoffaktivierung und Metabolismus anorganischer Zwischenprodukte

  • Chapter
Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 3741 Accesses

Zusammenfassung

Eisenporphyrin-Komplexe besitzen neben der Fähigkeit zum stöchiometrischen Disauerstoff-Transport vielfältige katalytische Funktionen im biochemischen Geschehen. Neben dem eigentlichen Häm-System (5.8) kommen auch Eisenkomplexe mit teilreduzierten Porphyrinliganden wie etwa Chlorin (→ Häm d) oder Sirohäm vor (vgl. 6.20). Häm-enthaftende Enzyme sind an Elektronentransport und -akkumulation, an der kontrollierten Umsetzung sauerstoffhaltiger Zwischenprodukte wie etwa O 2−2 , NO 2 oder SO 2−3 sowie zusammen mit anderen prosthetischen Gruppen an komplexen Redoxprozessen beteiligt (vgl. die Cytochrom c-Oxidase, Kap. 10.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • G. VON Jagow, W.D. Engel, Angew. Chem. 92 (1980) 684: Struktur und Funktion des energieumwandelnden Systems der Mitochondrien

    Google Scholar 

  • C. Greenwood in (o), Teil 1S. 43: Cytochromes c and cytochrome c containing enzymes

    Google Scholar 

  • G.R. Moore, G.W. Pettigrew:Cytochromes cSpringer-Verlag, Berlin, 1990

    Google Scholar 

  • G. Palmer, J. Reedijk, Eur. J. Biochem. 200 (1991) 599: Nomenclature of electron-transfer proteins

    Google Scholar 

  • G.N. George, T. Richards, R.E. Bare, Y. Gea, R.C. Prince, E.I. Stiefel, G.D. Watts, J. Am. Chem. Soc. 115 (1993) 7716: Direct observation of bis-sulfur ligation to the heme of bacterioferritin

    Google Scholar 

  • F.R. Salemme, Annu. Rev. Biochem. 46 (1977) 299: Structure and function of cytochromes c

    Google Scholar 

  • R.J.P. Williams in M.K. Johnson et al. (Hrsg.): Electron Transfer in Biology,Adv. Chem. Ser. 226 (1990), S. 3: Overview of biological electron transfer

    Google Scholar 

  • H.B. Gray, B.G. Malmstrom, Biochemistry 28 (1989) 7499: Long-range electron transfer in multisite metalloproteins

    Google Scholar 

  • J.R. Miller, Nouv. J. Chim. 11 (1987) 83: Controlling charge separation through effects of energy distance and molecular structure on electron transfer rates

    Google Scholar 

  • R.C. Prince, G.N. George, Trends Biochem. Sci. 15 (1990) 170: Tryptophan radicals T.L. PouLOs in (c), Vol. 7 (1988) 1: Herne enzyme crystal structures

    Google Scholar 

  • H. Pelletier, J. KRAUT, Science 258 (1992) 1748: Crystal structure of a complex between electron transfer partners cytochrome c peroxidase and cytochrome c

    Google Scholar 

  • J. Deisenhofer, H. Michel, Angew. Chem. 101 (1989) 872: Das photosynthetische Reaktionszentrum des Purpurbakteriums Rhodopseudomonas viridis (Nobel-Vortrag)

    Google Scholar 

  • W.R. Scheidt, C.A. Reed, Chem. Rev. 81 (1981) 543: Spin-state/stereochemical relationships in iron porphyrins: Implications for the hemoproteins

    Google Scholar 

  • S.G. Sligar, K.D. Egeberg, J.T. Sage, D. Morikis, P.M. Champion, J. Am. Chem. Soc. 109 (1987) 7896: Alteration of heme axial ligands by site-directed mutagenesis: A cytochrome becomes a catalytic demethylase

    Google Scholar 

  • P.R. Ortiz De Montellano, Acc. Chem. Res. 20 (1987) 289: Control of the catalytic activity of prosthetic heme by the structure of hemoproteins

    Google Scholar 

  • F.P. Guengerich, J. Biol. Chem. 266 (1991) 10019: Reactions and significance of cytochrome P-450 enzymes

    Google Scholar 

  • T.D. Porter, M.H. Coon, J. Biol. Chem. 266 (1991) 13469: Cytochrome P-450

    Google Scholar 

  • K. Ruckpaul, Pharm. Unserer Zeit 22 (1993) 296: Cytochrome P-450 abhängige Enzyme

    Google Scholar 

  • D. Mansuy, Pure Appl. Chem. 66 (1994) 737: Cytochromes P-450 and model systems: Great diversity of catalyzed reactions

    Google Scholar 

  • W.B.Jakoby, D. M. Ziegler, J. Biol. Chem. 265 (1990) 20715: The enzymes of detoxification

    Google Scholar 

  • G. Fellenberg:Chemie der Umweltbelastung2. Aufl., Teubner, Stuttgart, 1992

    Google Scholar 

  • D. Lenoir, H. Sandermann, JR., Biol. Unserer Zeit 23 (1993) 363: Entstehung und Wirkung von Dioxinen

    Google Scholar 

  • E. Mutschler:Arzneimittelwirkungen Lehrbuch der Pharmakologie und Toxikologie6. Aufl., WVG, Stuttgart, 1991

    Google Scholar 

  • H. Patzelt, W.D. Woggon, HeIv. Chim. Acta 75 (1992) 523: O-Insertion into nonactivated C-H bonds: The first observation of 0 2 cleavage by a P-450 enzyme model in the presence of a thiolate ligand

    Google Scholar 

  • R. Raag, T.L. Poulos, Biochemistry 28 (1989) 917: The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM

    Google Scholar 

  • K.G. Ravichandran, S.S. Boddupalli, C.A. Hasemann, J.A. Peterson, J. Deisenhofer, Science 261 (1993) 731: Crystal structure of hemoprotein domain of P450BM-3 a prototype for microsomal P450’s

    Google Scholar 

  • N.C. Gerber, S.G. Sligar, J. Am. Chem. Soc. 114 (1992) 8742: Catalytic mechanism of cytochrome P-450: Evidence for a distal charge relay

    Google Scholar 

  • D. Mandon, R. Weiss, M. Franke, E. Bill, A.X. Trautwein, Angew. Chem. 101 (1989) 1747: Ein Oxoeisenporphyrinat mit höhenwertigem Eisen: Bildung durch lösungsmittelabhängige Protonierung eines Peroxoeisen(111)-porphyrinat-Derivats

    Google Scholar 

  • J.T. Groves, Y. Watanabe, J. Am. Chem. Soc. 110 (1988) 8443: Reactive iron por-phyrin derivatives related to the catalytic cycles of cytochrome P-450 and peroxidase

    Google Scholar 

  • K.L. Kostka, B.G. Fox, M.P. Hendrich, T.J. Collins, C.E.F. Richard, L.J. Wright, E. Münck, J. Am. Chem. Soc. 115 (1993) 6746: High-valent transition metal chemistry. Mössbauer and EPR studies of high-spin (S=2) iron(IV) and intermediate-spin (S=3/2) iron(Ill) complexes with a macrocyclic tetraamido-N ligand

    Google Scholar 

  • D.T. Sawyer, Comments Inorg. Chem. 6 (1987) 103: The nature of the bonding and valency for oxygen in its metal compounds

    Google Scholar 

  • P.M. Champion, J. Am. Chem. Soc. 111 (1989) 3433: Elementary electronic excitations and the mechanism of cytochrome P450

    Google Scholar 

  • W.A. Herrmann, J. Organomet. Chem. 300 (1986) 111: Zufallsentdeckung am Beispiel Rhenium: Oxo-Komplexe in hohen und niedrigen Oxidationsstufen

    Google Scholar 

  • J. Everse, K.E. Everse, M.B. Grisham (Hrsg.): Peroxidases in Chemistry and Biology, Vol. 2, CRC Press, Boca Raton, 1990

    Google Scholar 

  • T. Haag, F. Lingens, K.-H. VAN Pee, Angew. Chem. 103 (1991) 1550: Eine Metall-Ionen und Cofaktor-unabhängige enzymatische Redoxreaktion: die Halogenierung durch bakterielle Nicht-Häm-Haloperoxidasen

    Google Scholar 

  • S. Hashimoto, R. Nakajima, I. Yamazaki, T. Kotani, S. Ohtaki, T. Kitagawa, FEBS Lett. 248 (205) 1989: Resonance RAMAN characterization of hog thyroid peroxidase

    Google Scholar 

  • H.E. Schoemaker, Red. Tray. Chim. Pays-Bas 109 (1990) 255: On the chemistry of lignin biodegradation

    Google Scholar 

  • J.H. Dawson, Science 240 (1988) 433: Probing structure-function relations in hemecontaining oxygenases and peroxidases

    Google Scholar 

  • K. Yamaguchi, Y Watanabe, I. Morishima, J. Am. Chem. Soc. 115 (1993) 4058: Direct observation of the push effect on the O-O bond cleavage of acylperoxoiron(lll) porphyrin complexes

    Google Scholar 

  • M.G. Peter, Angew. Chem. 101 (1989) 572: Chemische Modifikation von Biopolymeren durch Chinone und Chinonmethide

    Google Scholar 

  • K.E. Hammel in (d), Vol. 28 (1992), S. 41: Oxidation of aromatic pollutants by lignin-degrading fungi and their extracellular peroxidases

    Google Scholar 

  • G. Winkelmann (Hrsg.): Microbial Degradation of Natural Products, VCH Publishers, New York, 1992

    Google Scholar 

  • P.M.H. Kroneck, J. Beuerle, W. Schumacher in (d) Vol. 28 (1992), S. 455: Metal-dependent conversion of inorganic nitrogen and sulfur compounds

    Google Scholar 

  • T. Brittain, R. Blackmore, C. Greenwood, A.J. Thomson Eur. J. Biochem. 209 (1992) 793: Bacterial nitrite-reducing enzymes

    Google Scholar 

  • M.J. Clarke, J.B. Gaul, Struct. Bonding (Berlin), 81 (1993) 147: Chemistry relevant to the biological effects of nitric oxide and metallonitrosyls

    Google Scholar 

  • U. Forstermann, Biol. Unserer Zeit 24 (1994) 62: Stickoxid (NO): Umweltgift und körpereigener Botenstoff

    Google Scholar 

  • J.S. Stamler, D.J. Singel, J. LoscALzo, Science 258 (1992) 1898: Biochemistry of nitric oxide and its redox-activated forms

    Google Scholar 

  • E.Culotta, D.E. Koshland, Science 258 (1992) 1862: NO news is good news

    Google Scholar 

  • F. Murad, Angew. Chem. 111 (1999) 1953: Die Entdeckung einiger biologischer Wirkungen von Stickstoffmonoxid und seine Rolle für die Zeltkommunikation

    Google Scholar 

  • R.F. Furchgott, Angew. Chem. 111 (1999) 1990: Der relaxierende Faktor aus Endothelzellen: Entdeckung, frühe Untersuchungen und Identifizierung als Stickstoffmonoxid

    Google Scholar 

  • L.J. Ignarro, Angew. Chem. 111 (1999) 2002: Stickstoffmonoxid: ein einzigartiges endogenes Signalmolekül in der Gefäßbiologie

    Google Scholar 

  • A.L. Burnett, C.J. Lowenstein, D.S. Bredt, T.S.K. Chang, S.H. Snyder, Science 257 (1992) 401: Nitric oxide: A physiologic mediator of penile erection

    Google Scholar 

  • M.A. Marletta, J. Biol. Chem. 268 (1993) 12231: Nitric oxide synthase structure and mechanism

    Google Scholar 

  • A. Verma, D.J. Hirsch, C.E. Glatr, G.V. Ronnett, S.H. Snyder, Science 259 (1993) 381: Carbon monoxide. A putative neural messenger?

    Google Scholar 

  • C.K. Chang, R. Timkovich, W. Wu, Biochemistry 25 (1986) 8447: Evidence that heme dl is a 13-porphyrindione

    Google Scholar 

  • M.P. Hendrich, M. Logan, K.K. Andersson, D.M. Arciero, J.D. Lipscomb, A.B. Hooper, J. Am. Chem. Soc. 116 (1994) 11961: The active site of hydroxylamine oxidoreductase from Nitrosomonas: Evidence for a new metal cluster in enzymes

    Google Scholar 

  • H. Tributsch, J. Electroanal. Chem. 331 (1992) 783: On the significance of the simultaneity of electron transfer and cooperation in electrochemistry

    Google Scholar 

  • D.E. Mcree, D.C. Richardson, J.S. Richardson, L.M. Siegel, J. Biol. Chem. 261 (1986) 10277: The heme and Fe 4 S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (2005). Katalyse durch Hämoproteine: Elektronenübertragung, Sauerstoffaktivierung und Metabolismus anorganischer Zwischenprodukte. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-01605-2_6

Download citation

Publish with us

Policies and ethics