Skip to main content

Part of the book series: TEUBNER-TEXTE zur Physik ((TTZP,volume 30))

Abstract

A Kinnersley—type representation is constructed for the four—dimensional Einstein— Maxwell—dilaton—axion system restricted to space—times possessing two non—null cornmuting Killing symmetries. The new representation essentially uses the matrix—valued SL(2, R) formulation and effectively reduces the construction of the Geroch group to the corresponding problem for the vacuum Einstein equations. An infinite hierarchy of potentials is introduced in terms of 2 × 2 real symmetric matrices directly generalizing the scalar hierarchy of Kinnersley—Chitre known for the vacuum Einstein equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Geroch, Journ. Math. Phys. 13, 394 (1972) .

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Ehlers, in Les Theories Relativestes de la Gravitation, CNRS, Paris, p. 275, 1959.

    Google Scholar 

  3. B.K. Harrison, J. Math. Phys. 9, 1774 (1968).

    Article  Google Scholar 

  4. W. Kinnersley, Journ. Math. Phys. 14, 651 (1973); 18, 1529 (1977).

    Article  MathSciNet  Google Scholar 

  5. W. Kinnersley and D. Chitre, Journ. Math. Phys. 18, 1538 (1977); 19, 1926, 2037 (1978).

    Article  Google Scholar 

  6. G. Neugebauer, Habilitationschrift, Jena, 1969, (unpublished).

    Google Scholar 

  7. G. Neugebauer and D. Kramer, Ann. der Physik (Leipzig) 24, 62 (1969).

    Article  MathSciNet  Google Scholar 

  8. F.J. Ernst, Phys. Rev. 167 (1968) 1175; 168 (1968) 1415.

    Article  Google Scholar 

  9. B.K. Harrison, Phys. Rev. Lett., 41, 1197, (1978).

    Article  MathSciNet  Google Scholar 

  10. D. Maison, Journ. Math. Phys. 21, 871 (1979).

    Article  MathSciNet  Google Scholar 

  11. V.A. Belinskii and V.E. Zakharov. Sov. Phys. JETP, 48, 985 (1978); 50, 1 (1979).

    Google Scholar 

  12. I. Hauser and F.J. Ernst, Phys. Rev. D 20, 362, 1783 (1979) .

    MathSciNet  Google Scholar 

  13. G. Neugebauer, Journ. Phys. A: 12, L67; 1, L19 (1979).

    MathSciNet  Google Scholar 

  14. G. A. Alekseev, Pis’ma Zh. Eksp. Teor. Fiz. 32, 301 (1980) .

    Google Scholar 

  15. C. Cosgrove, Journ. Math. Phys., 21, 2417 (1981); 22, 2624 (1981); 23, 615 (1982).

    Article  MathSciNet  Google Scholar 

  16. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of the Einstein’s field equations, CUP, 1980.

    Google Scholar 

  17. A. Eris, M. Gürses, and A. Karasu, Journ. Math. Phys. 25, 1489 (1984); M. Gürses, in [18], p. 199.

    Article  Google Scholar 

  18. “Exact solutions of Einstein’s equations: Techniques and results.” Ed.W. Dietz and C. Hoenselaers. Lecture Notes in Physics, 205, 1985.

    Google Scholar 

  19. D. Kramer in Unified field theories of more than four dimensions, Eds. V. De Sabbata and E. Schmutzer, WS, 1983, p. 248;

    Google Scholar 

  20. G. Neugebauer and D. Kramer, in Galaxies, Axisymmetric systems and Relativity, ed. by M. MacCallum, CUP, 1986, p.149;

    Google Scholar 

  21. D. Kramer and G. Neugebauer in “Exact solutions of Einstein’s equations: Techniques and results. ” Ed.W. Dietz and C. Hoenselaers. Lecture Notes in Physics, 205, 1985., p. 1.

    Google Scholar 

  22. P. Breitenlohner and D. Maison, in “Exact solutions of Einstein’s equations: Techniques and results. ” Ed.W. Dietz and C. Hoenselaers. Lecture Notes in Physics, 205, 1985., p. 276;

    Chapter  Google Scholar 

  23. P. Breitenlohner and D. Maison Ann. IHP 46, p. 215, (1987).

    MathSciNet  MATH  Google Scholar 

  24. P. S. Letelier, Journ. Math. Phys., 23, 467. (1985) .

    Article  MathSciNet  Google Scholar 

  25. G.A. Alekseev, in Trudi MIAN , 176, (1987), p. 211.

    MATH  Google Scholar 

  26. N.R. Sibgatullin, Oscillations and waves in strong gravitational fields, Moscow, Nauka, 1984.

    MATH  Google Scholar 

  27. R.K. Dodd, in Soliton Theory, a survey of results, Eds. A.P. Fordy, Manchester UP, 1990. p.174.

    Google Scholar 

  28. E. Verdaguer, Phys. Repts, 229, 2, (1993)

    Article  MathSciNet  Google Scholar 

  29. J.B. Griffiths, Colliding Plane Waves in General Relativity, Clarendon Press 1991.

    MATH  Google Scholar 

  30. D. Maison, Gen. Rel. and Gray. 10, 717 (1979);

    Article  MathSciNet  Google Scholar 

  31. V. Belinskii and R. Ruffini, Phys. Lett. B89, 195 (1980) .

    MathSciNet  Google Scholar 

  32. B. Clement, Gen. Rel. and Gray., 18, 137, 861, (1986);

    MathSciNet  MATH  Google Scholar 

  33. B. Clement, Phys. Lett. A 118, 11, (1986).

    Article  MathSciNet  Google Scholar 

  34. B. Julia, in: “Proceedings of the John Hopkins Workshop on Particle Theory”, Baltimore (1981);

    Google Scholar 

  35. B. Julia, in “Superspace and Supergravityl’, Eds. S. Hawking and M. Rocek, Cambridge, 1981;

    Google Scholar 

  36. B. Julia, in “Unified Theories of More than Four Dimensions” Eds. V. De Sabbata and E. Shmutzer, WS, Singapore 1983.

    Google Scholar 

  37. P. Breitenlohner, D. Maison, and G. Gibbons, Comm. Math. Phys. 120, 253 (1988) .

    Article  MathSciNet  Google Scholar 

  38. H. Nicolai, Phys. Letts. B194 (1987) 402.

    Article  MathSciNet  Google Scholar 

  39. D.V. Gal’tsov and O.V. Kechkin, Phys. Rev. D50 (1994) 7394; (hep-th/9407155).

    MathSciNet  Google Scholar 

  40. D.V. Gal’tsov, Phys. Rev. Lett. 74 (1995) 2863, (hep-th/9410217).

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Bakas, Nucl. Phys. B428 (1994) 374;

    Article  MathSciNet  MATH  Google Scholar 

  42. Phys. Lett. B343 (1995) 103;J. Maharana, Hidden Symmetries of Two Dimensional String Effective Action, hep-th/9502001; Symmetries of the Dimensionally Reduced String Effective Action, hep-th/9502002; A. Sen, Duality Symmetry Group of Two Dimensional Heterotic String Theory, preprint TIFR-TH95–10, hep-th/9503057. J.H. Schwarz, Classical Symmetries of Some Two-Dimensional Models, CALT-68–1978, hep-th/9503078.

    Google Scholar 

  43. D.V. Gal’tsov and O.V. Kechkin, U-Duality and Symplectic Formulation of DilatonAxion gravity, Preprint IC/95/155, Hep-th/9507005; D.V. Gal’tsov, A.A. Garcia, O.V. Kechkin, J. Math. Phys., 1995, v. 36, n. 9, p. 1 – 19, D.V. Gal’tsov, O.V. Kechkin, Matrix Dilaton-Axion for Heterotic String in Three Dimensions, preprint DTP-MSU 95/24, hep-th/9507164.

    Google Scholar 

  44. D.V. Gal’tsov, O.V. Kechkin, Hidden symmetries in dilaton-axion gravity, in. press.

    Google Scholar 

  45. L.A. Bordag, A.B. Yanovski, J. Phys. A 28, 4007, (1995).

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Gal’tsov, D.V. (1996). Geroch—Kinnersley—Chitre Group for Dilaton—Axion Gravity. In: Bordag, M. (eds) Quantum Field Theory Under the Influence of External Conditions. TEUBNER-TEXTE zur Physik, vol 30. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-01204-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-01204-7_42

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-01205-4

  • Online ISBN: 978-3-663-01204-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics