Skip to main content

A Large Eddy Simulation Model for the Stratus-Topped Boundary Layer

  • Chapter
Book cover Direct and Large Eddy Simulation of Turbulence

Part of the book series: Notes on Numerical Fluid Mechanics ((NONUFM))

  • 197 Accesses

Summary

Because of the important impact of the stratus cloud regime on global climate, I have incorporated radiation and condensation processes into my large-eddy-simulation model to simulate the stratus-topped boundary layer. Such simulation helps to understand the turbulent structure within this type of planetary boundary layer (PBL), and. can be used to test the statistical turbulence models which are used as PBL parameterizations in climate models.

A sample study for mixed-layer modeling shows that within the stratus-topped mixed layer about 60% of the total buoyant-generated kinetic energy is used for dissipation and the rest converts back to potential energy through thermally indirect motions.

I also study the pressure term in the scalar flux equation for second-order closure modeling. Decomposing the pressure fluctuations into different components according to their physical processes allows one to study each component separately. The result shows that in the scalar flux equation the buoyancy component of the pressure term is proportional to the direct buoyant production term; the proportionality constant is about 0.75 for the stratus-topped PBL. The nonlinear interaction component of the pressure term can be represented by Rotta’s return-to-isotropy model, with a time scale profile proportional to (math), where (math) is the vertical velocity variance and € is the kinetic energy dissipation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lilly, D. K.: “Models of cloud-topped mixed layers under a strong inversion”, Q. J. R. Meteorol. Soc., 94 (1968) pp. 292–309.

    Article  Google Scholar 

  2. Deardorff, J. W.: “Numerical investigation of neutral and unstable planetary boundary layers”, J. Atmos. Sci., 29 (1972) pp. 91–115.

    Article  Google Scholar 

  3. Sommeria, G., and Deardorff, J. W.: “Subgrid-scale condensation in models of nonprecipitating clouds”, J. Atmos. Sci., 34 (1977) pp. 344–355.

    Article  Google Scholar 

  4. Deardorff, J. W.: “Stratocumulus-capped mixed layers derived from a threedimensional model”, Boundary-Layer Meteorol., (1980) 41 pp. 2052–2062.

    Google Scholar 

  5. Moin, P., Reynolds, W. C., and Ferziger, J. H.: “Large eddy simulation of incompressible turbulent channel flow”, Report No. TF-12, Thermoscience Div., Stanford, Calif. (1978).

    Google Scholar 

  6. Moin, P., and Kim, J.: “Numerical investigation of turbulent channel flow”, J. Fluid Mech., 118 (1982) pp. 341–377.

    Article  MATH  Google Scholar 

  7. Moeng, C.-H.: “A large-eddy-simulation model for the study of planetary boundary-layer turbulence”, J. Atmos. Sci., 41 (1984) pp. 2052–2062.

    Article  Google Scholar 

  8. Leonard, A.: “Energy cascade in large eddy simulations of turbulent fluid flows”, Advances in Geophysics, vol. 18, Academic Press, New York (1974) pp. 237–248.

    Article  Google Scholar 

  9. Moeng, C.-H., and Wyngaard, J. C.: “Statistics of conservative scalars in the convective boundary layer”, J. Atmos. Sci., 41 (1984) pp. 3161–3169.

    Article  Google Scholar 

  10. Fiedler, B., and Moeng, C.-H.: “A practical integral closure model for mean vertical transport of a scalar in a convective boundary layer”, J. Atmos. Sci., 42 (1985) pp. 359–363.

    Article  Google Scholar 

  11. Moeng, C.-H., and Wyngaard, J. C.: “An analysis of closures for pressure-scalar covariances in the convective boundary layer”, (Submitted to J. Atmos. Sci., 1986).

    Google Scholar 

  12. Herman, G. F., and Goody, R. M.: “Formation and persistence of summertime arctic stratus clouds”, J. Atmos. Sci., 33 (1976) pp. 1537–1553.

    Article  Google Scholar 

  13. Moeng, C.-H., and Arakawa, A.: “A numerical study of a marine subtropical stratus cloud layer and its stability”, J. Atmos. Sci., 37 (1980) pp. 2661–2675.

    Article  Google Scholar 

  14. Rodgers, C. D.: “The use of emissivity in atmospheric radiation calculation”, Q. J. R. Meteorol. Soc., 93 (1967) pp. 43–54.

    Article  Google Scholar 

  15. Carruthers, D. J., and Hunt, J. C. R.: “Velocity fluctuations near an interface between a turbulent region and a stably stratified layer”. (to be published in J. Fluid Mech., 1985).

    Google Scholar 

  16. Stage, S. A., and Businger, J. A.: “A model for entrainment into a cloud-topped marine boundary layer. Part I: Model description and application to a cold-air outbreak episode”, J. Atmos. Sci., 38 (1981) pp. 2213–2229.

    Article  Google Scholar 

  17. Randall D. A.: “Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers”, J. Atmos. Sci., 41 (1984) pp. 402–413.

    Article  Google Scholar 

  18. Rotta, J. C.: “Statistische theorie nichthomogener turbulenz”, Z. Phys., 129 (1951) pp. 547–572.

    Article  MathSciNet  MATH  Google Scholar 

  19. Deardorff, J. W.: “Three-dimensional numerical study of turbulence in an entraining mixed layer”, Boundary Layer Meteorol., 7 (1974) pp. 199–226.

    Google Scholar 

  20. Wyngaard, J. C.: “Boundary layer modeling. Atmospheric Turbulence and Air Pollution Modeling”, Ed. by F. T. M. Nieuwstadt and H. van Dop. D. Reidel Publishing Company. Dordrecht, Holland/Boston, U.S.A./London, England 1982.

    Google Scholar 

  21. Lumley, J. L.: Introduction. In “lecture series 76: Prediction Methods for Turbulent Flows.”, Von Karman Institute, Fluid Dyn., Rhode-St-Genese, Belgium 1975.

    Google Scholar 

  22. Zeman, O., and Tennekes, H.: “A self-contained model for the pressure terms in the turbulent stress equations of the neutral atmospheric boundary layer”, J. Atmos. Sci., 32 (1975) pp. 11808–1813.

    Article  Google Scholar 

  23. Klemp, J. B., and Rotunno, R.: “A study of the tornadic region within a supercell thunderstorm”, J. Atmos. Sci., 40 (1983) pp. 359–377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Schumann Rainer Friedrich

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Moeng, CH. (1986). A Large Eddy Simulation Model for the Stratus-Topped Boundary Layer. In: Schumann, U., Friedrich, R. (eds) Direct and Large Eddy Simulation of Turbulence. Notes on Numerical Fluid Mechanics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-00197-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-00197-3_19

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-00048-8

  • Online ISBN: 978-3-663-00197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics