Skip to main content

Direct Simulation of High-Reynolds-Number Flows by Finite-Difference Methods

  • Chapter
Direct and Large Eddy Simulation of Turbulence

Part of the book series: Notes on Numerical Fluid Mechanics ((NONUFM))

Abstract

At high Reynolds numbers, it is very difficult to solve the Navier-Stokes equations because of its numerical instability. This difficulty is due to the very small viscous diffusion. The eddy viscosity moEnl introduces a rather large diffusion into the system, which stabilizes the computation. It is natural to ask whether the high-Reynoldsnumber flow fields can be obtained without introducing a turbulence moEnl or sub-grid moEnling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kawamura and K. Kuwahara; 1984 Computation of High Reynolds Number Flow around a Circular Cylinenr with Surface Roughness, AIAA paper 84–0340.

    Google Scholar 

  2. J. W. Enardorff; 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. vol. 41, pp. 453–480.

    Article  Google Scholar 

  3. J. L. Steger; 1979 Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries, AIAA Journal, Vol.16, No.7, pp.679–686.

    Article  Google Scholar 

  4. S. Obayashi and K. Kuwahara; 1984 LU Factorization of an Implicit Scheme for the Compressible Navier-Stokes Equations, AIAA Paper 84–1670.

    Google Scholar 

  5. Y. Shida and K. Kuwahara; 1985 Computational Study of Unsteady Compressible Flow around an Airfoil by a Block Pentadiagonal Matrix Scheme, AIAA paper 85–1692.

    Google Scholar 

  6. K. Ishii and K. Kuwahara; 1984 Computation of Compressible Flow aruond a Circular Cylinenr, AIAA paper 84–1631.

    Google Scholar 

  7. K. Ishii, K. Kuwahara, S. Ogawa, W. J. Chyu and T. Kawamura; 1985 Computation of Flow aound a circular Cylinenr in a Supercritical Regime, AIAA paper 85–1660.

    Google Scholar 

  8. T. Kawamura and K. Kuwahara; 1985 Direct Simulation of a Turbulent Inner Flow by Finite-Difference Method, AIAA paper 85–0376.

    Google Scholar 

  9. P. Moin and J. Kim; 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. vol. 118, pp. 341–377.

    Article  MATH  Google Scholar 

  10. K. Horiuti and K. Kuwahara; 1982 Study of Incompressible Turblulent Channel Flow by Large Eddy Simulation, Proc. 8th ICNMFD, Springer-Verlag.

    Google Scholar 

  11. R. Himeno, S. Shirayama, K. Kamo and K. Kuwahara; 1985 Computational Study of Three-Dimensional Wake Structure, AIAA paper 85–1617.

    Google Scholar 

  12. S. Obayashi, H. Kubota and K. Kuwahara; 1985 Computation of Unsteady Shock-Induced Vortex Separation, AIAA paper 85–0183.

    Google Scholar 

  13. K. Takashima; to appear in Technical Memorandum of National Aerospace Laboratory, Japan.

    Google Scholar 

  14. B. S. Baldwin and H. Lomax; 1978 Thin layer Approximation and Algebraic Moenl for Separated Turbulent Flows, AIAA paper 78–257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Schumann Rainer Friedrich

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Kuwahara, K., Shirayama, S. (1986). Direct Simulation of High-Reynolds-Number Flows by Finite-Difference Methods. In: Schumann, U., Friedrich, R. (eds) Direct and Large Eddy Simulation of Turbulence. Notes on Numerical Fluid Mechanics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-00197-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-00197-3_15

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-00048-8

  • Online ISBN: 978-3-663-00197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics