Skip to main content

The Friedman World Models

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 888 Accesses

Summary

The standard Friedman world models are based on General Relativity. The models are developed for the cases in which the cosmological constant Λ is zero and non-zero. A helpful Newtonian analogue is discussed. There follows a detailed analysis of the dynamics of the Friedman models and of the relation between intrinsic properties and observables. Density parameters for baryonic, dark matter and the dark energy are introduced. The relations between observables and intrinsic properties include the deceleration parameter, cosmic time–redshift relations, distance measures as a function of redshift, angular diameter-redshift relations, flux density-redshift relations and the comoving volume within redshift z. Angular diameter distances between any two redshifts are developed for models with Λ = 0 and with Λ ≠ 0. The flatness problem is introduced as are the changes to the predictions for inhomogeneous world models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As will be discussed in Chaps. 8 and 15, Hubble’s constant is now known to better than 10% accuracy. A value of h = 0.7 can be used with some confidence.

References

  • Bernstein, J., & Feinberg, G. (1986). Cosmological constants: Papers in modern cosmology. New York: Columbia University Press.

    MATH  Google Scholar 

  • Blandford, R. D., & Narayan, R. (1992). Cosmological applications of gravitational lensing. Annual Review of Astronomy and Astrophysics, 30, 311–358.

    Article  ADS  Google Scholar 

  • Bondi, H. (1960). Cosmology (2nd ed.). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Carroll, S. M., Press, W. H., & Turner, E. L. (1992). The cosmological constant. Annual Review of Astronomy and Astrophysics, 30, 499–542.

    Article  ADS  Google Scholar 

  • Close, L. M., Hall, P. B., Liu, M. C., & Hege, E. K. (1995). Spectroscopic and morphological evidence that IRAS FSC 10214+4724 is a gravitational lens. The Astrophysical Journal, 452, L9–L12.

    Article  ADS  Google Scholar 

  • CMS Collaboration. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716(1), 30–61. https://doi.org/10.1016/j.physletb.2012.08.021

    Article  ADS  Google Scholar 

  • Dashevsky, V. M., & Zeldovich, Y. B. (1964). Propagation of light in a nonhomogeneous non-flat Universe II. Astronomicheskii Zhurnal, 41, 1071–1074. Translation: (1965), SA, 8, 854–856.

    Google Scholar 

  • Dyer, C. C., & Roeder, R. C. (1972). The distance-redshift relation for universes with no intergalactic medium. The Astrophysical Journal Letter, 174, L115–L117.

    Article  ADS  Google Scholar 

  • Dyer, C. C., & Roeder, R. C. (1973). Distance-redshift relations for universes with some intergalactic medium. The Astrophysical Journal Letter, 180, L31–L34.

    Article  ADS  Google Scholar 

  • Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie (Cosmological considerations in the general theory of relativity). Sitzungsber Preuss Akad Wiss Berlin, I (pp. 142–152).

    Google Scholar 

  • Einstein, A. (1919). Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? (Do gravitational fields play a significant role for the structure of elementary particles). Sitzungsber Preuss Akad Wiss Berlin, I (pp. 349–356).

    Google Scholar 

  • Einstein, A. (1922). Bemerkung zu der Arbeit von A. Friedmann “Ueber die Kruemmung des Raumes” (Remark on the Work of A. Friedmann “On the Curvature of Space”). Zeitschrift für Physik, 11, 326.

    Google Scholar 

  • Einstein, A. (1923). Notiz zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes” (A note on the work of A. Friedmann “on the curvature of space”). Zeitschrift für Physik, 16, 228.

    Google Scholar 

  • Friedman, A. A. (1922). On the curvature of space. Zeitschrift für Physik, 10, 377–386.

    Article  ADS  Google Scholar 

  • Friedman, A. A. (1924). On the possibility of a world with constant negative curvature. Zeitschrift für Physik, 12, 326–332.

    ADS  Google Scholar 

  • Higgs, P. (1964). Broken symmetries, massless particles and gauge fields. Physics Letters, 12, 132–133.

    Article  ADS  Google Scholar 

  • Kaiser, N. (1992). Weak gravitational lensing of distant galaxies. The Astrophysical Journal, 388, 272–286.

    Article  ADS  Google Scholar 

  • Lemaître, G. (1927). A homogeneous Universe of constant mass and increasing radius, accounting for the radial velocity of extra-galactic nebulae. Annales de la Société Scientifique de Bruxelles A, 47, 29–39. Translation: (1931), Monthly Notices of the Royal Astronomical Society, 91, 483–490.

    Article  ADS  Google Scholar 

  • Lemaître, G. (1933). Spherical condensations in the expanding Universe. Comptes Rendus de l’Academie des Science, 196, 903–904.

    MATH  Google Scholar 

  • Mattig, W. (1959). Über den Zusammenhang Zwischen der Anzahl der Extragalaktischen Objekte und der Scheinbaren Helligkeit. Astronomische Nachrichten, 285, 1–2.

    Article  ADS  Google Scholar 

  • Milne, E. A., & McCrea, W. H. (1934a). Newtonian expanding Universe. The Quarterly Journal of Mathematics, 5, 64–72.

    Article  ADS  MATH  Google Scholar 

  • Milne, E. A., & McCrea, W. H. (1934b). Newtonian universes and the curvature of space. The Quarterly Journal of Mathematics, 5, 73–80.

    ADS  MATH  Google Scholar 

  • Peacock, J. (1999). Cosmological physics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Robertson, H. P. (1928). On relativistic cosmology. Philosophical Magazine, 5, 835–848.

    MATH  Google Scholar 

  • Tropp, E., Frenkel, V., & Chernin, A. (1993). Alexander A. Friedmann; the man who made the Universe expand. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • White, S. D. M. (1990). Physical cosmology. In J. A. Peacock, A. F. Heavens, & A. T. Davies (Eds.), Physics of the early Universe (pp. 1–62). Edinburgh: SUSSP Publications.

    Google Scholar 

  • Zeldovich, Y. (1986). Cosmological field theory for observational astronomers. Astrophysics and Space Physics Review, 5, 1–37.

    ADS  Google Scholar 

  • Zeldovich, Y. B. (1964). Observations in a Universe homogeneous in the mean. Astronomicheskii Zhurnal, 41, 19–24. [Translation: (1964), SA, 8, 13–16].

    Google Scholar 

  • Zeldovich, Y. B. (1968). The cosmological constant and the theory of elementary particles. Uspekhi Fizicheskikh Nauk, 95, 209–230. [Translation: (1968) SP-Uspekhi, 11, 381–393.].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). The Friedman World Models. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics