Skip to main content

The Large Scale Structure of the Universe

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 905 Accesses

Summary

The best information on the large-scale isotropy and homogeneity of the Universe comes from the distribution of the cosmic microwave background radiation (CMB) over the sky and its spectrum. The remarkable isotropy of the CMB contrasts with large-scale distribution of galaxies which display huge walls and voids on large scales, which has a sponge-like topology. Their distributions are described by correlation functions. Combining Hubble’s law with the isotropy and homogeneity of the Universe shows that the Universe as a whole is expanding uniformly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I have given a derivation of this result in my book High Energy Astrophysics (Longair, 2011), Sects. 9.4.3 and 9.5.

  2. 2.

    The use of h = H 0∕(100 km s−1 Mpc−1) is a convenient device for adjusting the dimensions and luminosities of extragalactic objects to the reader’s preferred value of Hubble’s constant. If a value of H 0 = 100 km s−1 Mpc−1 is preferred, h = 1; if the value H 0 = 50 km s−1 Mpc−1 is adopted, h = 0.5 and so on. It is now known that the value of h is h ≈ 0.7.

References

  • Bennett, C. L., Banday, A. J., Gorski, K. M., et al. (1996). Four-year COBE DMR Cosmic Microwave Background observations: Maps and basic results. The Astrophysical Journal, 464, L1–L4.

    Article  ADS  Google Scholar 

  • Condon, J. J., & Matthews, A. M. (2018). ΛCDM cosmology for astronomers. Publications of the Astronomical Society of the Pacific, 130(989), 073001. https://doi.org/10.1088/1538-3873/aac1b2

    Article  ADS  Google Scholar 

  • Connolly, A., Scranton, R., Johnston, D., et al. (2002). The angular correlation function of galaxies from early Sloan Digital Sky Survey data. The Astrophysical Journal, 579, 42–47.

    Article  ADS  Google Scholar 

  • Fixsen, D., Cheng, E., Gales, J., et al. (1996). The Cosmic Microwave Background spectrum from the full COBE FIRAS data set. The Astrophysical Journal, 473, 576–587.

    Article  ADS  Google Scholar 

  • Geller, M. J., & Huchra, J. P. (1989). Mapping the Universe. Science, 246, 897–903.

    Article  ADS  Google Scholar 

  • Gott, J. R., Melott, A. L., & Dickinson, M. (1986). The sponge-like topology of large-scale structure in the Universe. The Astrophysical Journal, 306, 341–357.

    Article  ADS  MathSciNet  Google Scholar 

  • Groth, E., & Peebles, P. (1977). Statistical analysis of catalogs of extragalactic objects. VII: Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies. The Astrophysical Journal, 217, 385–405.

    Article  ADS  Google Scholar 

  • Groth, E., & Peebles, P. (1986). The Shane-Wirtanen counts – Observer and time-dependent effects. The Astrophysical Journal, 310, 507–517.

    Article  ADS  Google Scholar 

  • Hoyle, F., Vogeley, M., Gott, J.R., III. (2002a). Two-dimensional topology of the two-degree field galaxy redshift survey. The Astrophysical Journal, 570, 44–53.

    Article  ADS  Google Scholar 

  • Hoyle, F., Vogeley, M., Gott, J.R., III, et al. (2002b). Two-dimensional topology of the Sloan Digital Sky Survey. The Astrophysical Journal, 580, 663–671.

    Article  ADS  Google Scholar 

  • Hubble, E. P. (1936). The realm of the nebulae. Yale University Press.

    MATH  Google Scholar 

  • Hubble, E. P., & Humason, M. (1934). The velocity–distance relation among extra-galactic nebulae. The Astrophysical Journal, 74, 43–80.

    Article  ADS  Google Scholar 

  • Jarrett, T. (2004). Large scale structure in the local Universe: The 2MASS galaxy catalog. Publications of the Astronomical Society of Australia, 21(4), 396–403. https://doi.org/10.1071/AS04050

    Article  ADS  MathSciNet  Google Scholar 

  • Kolatt, T., Dekel, A., & Lahav, O. (1995). Large-scale mass distribution behind the galactic plane. Monthly Notices of the Royal Astronomical Society, 275, 797–811.

    Article  ADS  Google Scholar 

  • Longair, M. S. (2011). High energy astrophysics (3rd ed.). Cambridge University Press.

    Book  Google Scholar 

  • Maddox, S. J., Efstathiou, G., Sutherland, W. G., & Loveday, J. (1990). Galaxy correlations on large scales. Monthly Notices of the Royal Astronomical Society, 242, 43P–47P.

    Article  ADS  Google Scholar 

  • Melott, A., Weinberg, D., & Gott, J. (1988). The topology of large-scale structure. II: Nonlinear evolution of Gaussian models. The Astrophysical Journal, 328, 50–68.

    Article  ADS  Google Scholar 

  • Metcalfe, N., Shanks, T., Weilbacher, P. M., et al. (2006). Galaxy number counts - VI: An H-band survey of the Herschel deep field. Monthly Notices of the Royal Astronomical Society, 370(3), 1257–1273. https://doi.org/10.1111/j.1365-2966.2006.10534.x

    Article  ADS  Google Scholar 

  • Page, L. (1997). Review of observations of the Cosmic Microwave Background. In N. Turok (Ed.), Critical dialogues in cosmology (pp. 343–362). World Scientific.

    Google Scholar 

  • Parihar, P., Vogeley, M. S., Gott, J., et al. (2014). A topological analysis of large-scale structure, studied using the CMASS sample of SDSS-III. The Astrophysical Journal, 796(2), 86. https://doi.org/10.1088/0004-637X/796/2/86

    Article  ADS  Google Scholar 

  • Particle Data Group, Zyla, P. A., et al. (2021). Review of particle physics. Progress of Theoretical and Experimental Physics, 2021, 083C01. https://doi.org/10.1093/ptep/ptaa104

  • Peebles, P. J. E. (1993). Principles of physical cosmology. Princeton University Press.

    MATH  Google Scholar 

  • Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 MHz. The Astrophysical Journal, 142, 419–421.

    Article  ADS  Google Scholar 

  • Planck Collaboration, Aghanim, N., Akrami, Y., Arroja, F., et al. (2020). Planck 2018 results. I: Overview and the cosmological legacy of Planck. Astronomy & Astrophysics, 641, A1. https://doi.org/10.1051/0004-6361/201833880

  • Sandage, A. R. (1968). Observational cosmology. The Observatory, 88, 91–106.

    ADS  Google Scholar 

  • Scranton, R., Johnston, D., Dodelson, S., et al. (2002a). Analysis of systematic effects and statistical uncertainties in angular clustering of galaxies from early Sloan Digital Sky Survey data. The Astrophysical Journal, 579(1), 48–75. https://doi.org/10.1086/342786

    Article  ADS  Google Scholar 

  • Scranton, R., Johnston, D., Dodelson, S., et al. (2002b). Analysis of systematic effects and statistical uncertainties in angular clustering of galaxies from early Sloan Digital Sky Survey data. The Astrophysical Journal, 579, 48–75.

    Article  ADS  Google Scholar 

  • Sunyaev, R. A., & Zeldovich, Y. B. (1980). Microwave Background radiation as a probe of the contemporary structure and history of the Universe. Annual Review of Astronomy and Astrophysics, 18, 537–560.

    Article  ADS  Google Scholar 

  • Wang, Y., Brunner, R. J., & Dolence, J. C. (2013). The SDSS galaxy angular two-point correlation function. Monthly Notices of the Royal Astronomical Society, 432(3), 1961–1979. https://doi.org/10.1093/mnras/stt450

    Article  ADS  Google Scholar 

  • Zeldovich, Y., & Sunyaev, R. (1969). The interaction of matter and radiation in a hot-model Universe. Astrophysics and Space Science, 4, 301–316.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). The Large Scale Structure of the Universe. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics