Skip to main content

More Tools and Problems

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 887 Accesses

Summary

With the rules for the development of density perturbations under gravity in the expanding Universe established, we need more tools to enable the models to be confronted with observation. We first need the concept of the horizon scales which are present in expanding world models and their physical significance. These are developed for the critical world model, Ω0 = 1, ΩΛ = 0 and then for the preferred reference model Ω0 = 0.3, ΩΛ = 0.7. This leads to the issues of dealing with perturbations on super-horizon scales. With these tools in place, two early models of the formation of structure are reviewed, the baryonic adiabatic and isothermal models of structure formation, based upon the assumption that the Universe is composed of only baryonic matter and radiation. Dissipative processes are included in the physical realisation of models of structure formation. It is shown that neither of these models can account for the observations, particularly the limits imposed in the early 1980s on the amplitude of temperature fluctuations in the CMB. Something was seriously missing—more than simply baryons are needed to account for the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many of the most important papers by Zeldovich and his colleagues are contained in Volume 2 of Zeldovich’s selected works (Zeldovich, 1993).

References

  • Bardeen, J. M. (1980). Gauge-invariant cosmological perturbations. Physical Review D, 22, 1882–1905.

    Article  ADS  MathSciNet  Google Scholar 

  • Baumann, D. (2022). Cosmology. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bertschinger, E. (1996). Cosmological dynamics. In R. Schaeffer, J. Silk, M. Spiro, & J. Zinn-Justin (Eds.), Cosmology and large scale structure: Proceedings of the “Les Houches Ecole d’Ete de Physique Theorique” (pp. 273–347). Elsevier Scientific Publishing Company.

    Google Scholar 

  • Bruni, M., Dunsby, P. K. S., & Ellis, G. F. R. (1992). Cosmological perturbations and the physical meaning of gauge-invariant variables. The Astrophysical Journal, 395, 34–53.

    Article  ADS  Google Scholar 

  • Coles, P., & Lucchin, F. (2002). Cosmology: The origin and evolution of cosmic structure (2nd ed.). John Wiley & Sons.

    MATH  Google Scholar 

  • Davis, T. M., & Lineweaver, C. H. (2004). Expanding confusion: Common misconceptions of cosmological horizons and the superluminal expansion of the Universe. Publications of the Astronomical Society of Australia, 21, 97–109.

    Article  ADS  Google Scholar 

  • Dodelson, S. (2003). Modern cosmology. Academic Press. Second edition with F. Schmidt, 2020.

    Google Scholar 

  • Efstathiou, G. (1990). Cosmological perturbations. In J. A. Peacock, A. F. Heavens, & A. T. Davies (Eds.), Physics of the early Universe (pp. 361–463). SUSSP Publications.

    Google Scholar 

  • Guth, A. (1981). Inflationary Universe: A possible solution to the horizon and flatness problems. Physical Review D, 23, 347–356.

    Article  ADS  MATH  Google Scholar 

  • Liddle, A. R., & Lyth, D. (2000). Cosmological inflation and large-scale structure. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lineweaver, C. H. (2005). Inflation and the Cosmic Microwave Background. In M. Colless (Ed.), The New Cosmology (pp. 31–65). University of New South Wales.

    Google Scholar 

  • Ma, C.-P., & Bertschinger, E. (1995). Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. The Astrophysical Journal, 455, 7–25.

    Article  ADS  Google Scholar 

  • Mészáros, P. (1974). The behaviour of point masses in an expanding cosmological substratum. Astronomy & Astrophysics, 37, 225–228.

    ADS  Google Scholar 

  • Padmanabhan, T. (1993). Structure formation in the Universe. Cambridge University Press.

    Google Scholar 

  • Partridge, R. (1980a). Fluctuations in the Cosmic Microwave Background radiation at small angular scales. Physica Scripta, 21, 624–629.

    Article  ADS  Google Scholar 

  • Partridge, R. (1980b). New limits on small-scale angular fluctuations in the Cosmic Microwave Background. The Astrophysical Journal, 235, 681–687.

    Article  ADS  Google Scholar 

  • Peacock, J. (1999). Cosmological physics. Cambridge University Press.

    MATH  Google Scholar 

  • Peebles, P. (1981). Primeval adiabatic perturbations: Constraints from the mass distribution. The Astrophysical Journal, 248, 885–897.

    Article  ADS  Google Scholar 

  • Peebles, P. J. E. (1980). The large-scale structure of the Universe. Princeton University Press.

    MATH  Google Scholar 

  • Press, W., & Schechter, P. (1974). Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. The Astrophysical Journal, 187, 425–438.

    Article  ADS  Google Scholar 

  • Rees, M. J., & Sciama, D. W. (1969). The evolution of density fluctuations in the Universe. I: Dissipative processes in the early stages. Comments on Astrophysics and Space Physics, 1, 140–146.

    ADS  Google Scholar 

  • Rindler, W. (1956). Visual horizons in world models. Monthly Notices of the Royal Astronomical Society, 116, 662–677.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Silk, J. (1968). Cosmic black-body radiation and galaxy formation. The Astrophysical Journal, 151, 459–471.

    Article  ADS  Google Scholar 

  • Sunyaev, R., & Zeldovich, Y. (1970). Small-scale fluctuations of relic radiation. Astrophysics and Space Science, 7, 3–19.

    Article  ADS  Google Scholar 

  • Sunyaev, R. A., & Zeldovich, Y. B. (1972). Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating. Astronomy & Astrophysics, 20, 189–200.

    ADS  Google Scholar 

  • Weinberg, S. (1972). Gravitation and cosmology. John Wiley and Company.

    Google Scholar 

  • Zeldovich, Y. B. (1970). Gravitational instability: An approximate theory for large density perturbations. Astronomy & Astrophysics, 5, 84–89.

    ADS  Google Scholar 

  • Zeldovich, Y. B. (1993). Particles, nuclei and the Universe. In J. Ostriker, G. Barenblatt, & R. Sunyaev (Eds.), Selected Works of Yakov Borisevich Zeldovich (Vol. 2.). Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). More Tools and Problems. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics