Skip to main content

The Evolution of Density Perturbations in the Standard Big Bang

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 890 Accesses

Summary

A central theme of galaxy and large-scale structure formation is the collapse and evolution of density perturbations in the Universe under gravity. The basic physics of gravitational collapse is built up, starting with the non-relativistic case and the Jeans’ instability. Gravitational collapse in a static and expanding medium is contrasted—exponential growth of the instability in the case of a static medium and algebraic collapse in an expanding medium. General solutions are provided for a range of world models. The evolution of peculiar velocities provide a means of probing the development of density perturbations. Collapse in the relativistic case turns out to preserve many features of the non-relativistic results. These analyses expose the fundamental problems of the formation of structure in the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I have discussed the relation between the Eulerian and Lagrangian systems of coordinates in Chap. 7 of my book Theoretical Concepts in Physics (Longair, 2020).

References

  • Baumann, D. (2022). Cosmology. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Carroll, S. M., Press, W. H., & Turner, E. L. (1992). The cosmological constant. Annual Review of Astronomy and Astrophysics, 30, 499–542.

    Article  ADS  Google Scholar 

  • Coles, P., & Lucchin, F. (2002). Cosmology: The origin and evolution of cosmic structure (2nd ed.). John Wiley & Sons.

    MATH  Google Scholar 

  • Dodelson, S. (2003). Modern cosmology. Academic Press. Second edition with F. Schmidt, 2020.

    Google Scholar 

  • Gunn, J. E. (1978). The Friedmann models and optical observations in cosmology. In A. Maeder, L. Martinet, & G. Tammann (Eds.), Observational cosmology: 8th advanced course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978 (pp. 1–121). Geneva Observatory Publications.

    Google Scholar 

  • Heath, D. J. (1977). The growth of density perturbations in zero pressure Friedmann-LemaĂ®tre universes. Monthly Notices of the Royal Astronomical Society, 179, 351–358.

    Article  ADS  Google Scholar 

  • Hobson, M., Efstathiou, G., & Lasenby, A. (2006). General relativity: An introduction for physicists. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Jeans, J. (1902). The stability of a spherical nebula. Philosophical Transactions of the Royal Society, 199, 1–53.

    ADS  MATH  Google Scholar 

  • Kolb, E. W., & Turner, M. S. (1990). The early Universe. Addison-Wesley Publishing Co.

    MATH  Google Scholar 

  • LemaĂ®tre, G. (1933). Spherical condensations in the expanding Universe. Comptes Rendus de l’AcadĂ©mie des Sciences, 196, 903–904.

    MATH  Google Scholar 

  • Liddle, A. R., & Lyth, D. (2000). Cosmological inflation and large-scale structure. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lifshitz, E. (1946). On the gravitational stability of the expanding Universe. Journal of Physics/Academy of Sciences of the USSR, 10, 116–129.

    MathSciNet  MATH  Google Scholar 

  • Lightman, A. P., & Schechter, P. L. (1990). The Omega dependence of peculiar velocities induced by spherical density perturbations. The Astrophysical Journal Supplement Series, 74, 831–832.

    Article  ADS  Google Scholar 

  • Longair, M. S. (2020). Theoretical concepts in physics: An alternative view of theoretical reasoning in physics (3rd ed.). Cambridge University Press.

    Book  MATH  Google Scholar 

  • Padmanabhan, T. (1993). Structure formation in the Universe. Cambridge University Press.

    Google Scholar 

  • Peacock, J. (1999). Cosmological physics. Cambridge University Press.

    MATH  Google Scholar 

  • Peebles, P. J. E. (1980). The large-scale structure of the Universe. Princeton University Press.

    MATH  Google Scholar 

  • Peebles, P. J. E. (1993). Principles of physical cosmology. Princeton University Press.

    MATH  Google Scholar 

  • Tolman, R. (1934). Effect of inhomogeneity on cosmological models. Proceedings of the National Academy of Sciences, 20, 169–176.

    Google Scholar 

  • Tonks, L., & Langmuir, I. (1929). Oscillations in ionized gases. Physical Review, 33, 195–210.

    Article  ADS  MATH  Google Scholar 

  • Weinberg, S. (1972). Gravitation and cosmology. John Wiley and Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). The Evolution of Density Perturbations in the Standard Big Bang. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics