Skip to main content

Mechanik, Belastbarkeit, Struktur und Funktionen biologischer Materialien – Sehnen, Bänder, Knochen, Knorpel und Muskeln

  • Chapter
  • First Online:
Sport
  • 9732 Accesses

Zusammenfassung

Der menschliche Organismus besteht aus verschiedenen Bindegewebsarten, denen u. a. wichtige verbindende, schützende und stützende Funktionen zukommen. Hierfür haben sich spezielle Bindegewebsformen entwickelt, die sich hinsichtlich mechanischer, anatomischer und physiologischer Aspekte stark unterschieden. In diesem Kapitel werden einerseits die Mechanik und Belastbarkeit der biologischen Materialien Sehnen, Bänder, Knochen, Knorpel und Muskel beschrieben, andererseits werden die Strukturen und Funktionen des menschlichen Stütz- und Bewegungsapparates vorgestellt und diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Alexander, R. M. (1991). Elastic mechanisms in primate locomotion. Zeitschrift für Morphologie und Anthropologie, 78, 315–320.

    Article  CAS  Google Scholar 

  • Alt, W. (2000). Biomechanische Aspekte der Gelenkstabilisierung. Maurer.

    Google Scholar 

  • Arendt, E. A. (2000). Stress fractures and the female athlete. Clinical Orthopaedics, 372, 131–138.

    Article  Google Scholar 

  • Arnold, G. (1974). Biomechanische und rheologische Eigenschaften menschlicher Sehnen. Zeitschrift für Anatomie und Entwicklungsgeschichte, 143, 263–300.

    Article  CAS  Google Scholar 

  • van den Berg, F., & Cabri, J. (2016). Angewandte Physiologie (4. Aufl.). Thieme.

    Google Scholar 

  • Brinckmann, P., Frobin, W., & Leivseth, G. (2000). Orthopädische Biomechanik. Thieme.

    Google Scholar 

  • Burstein, A. H., Currey, J. D., Frankel, V. H., & Reilly, D. T. (1972). The ultimate properties of bone tissue: The effects of yielding. Journal of Biomechanics, 5, 35–44.

    Article  CAS  Google Scholar 

  • Buschmann, J., & Meier Bürgisser, G. (2017). Biomechanics of tendons and ligaments: Tissue reconstruction and regeneration. Woodhead Publishing.

    Google Scholar 

  • Butler, D. L., Grood, E. S., Noyes, F. R., & Zernicke, R. F. (1978). Biomechanics of ligaments and tendons. Exercise and Sport Sciences Reviews, 6, 125–181.

    CAS  Google Scholar 

  • Cavagna, G. A., Saibene, F. P., & Margaria, R. (1964). Mechanical work in running. Journal of Applied Physiology, 19, 249–256.

    Article  CAS  Google Scholar 

  • Cavagna, G. A., Dusman, B., & Margaria, R. (1968). Positive work done by a previously stretched muscle. Journal of Applied Physiology, 24, 21–32.

    Article  CAS  Google Scholar 

  • Dunn, M. G., Liesch, J. B., Tiku, M. L., & Zawadsky, J. P. (1995). Development of fibroblast-seeded ligament analogs for ACL reconstruction. Journal of Biomedical Materials Research, 29, 1363–1371.

    Article  CAS  Google Scholar 

  • Edman, K. A. P., Elzinga, G., & Noble, M. I. M. (1981). Critical sarcomere extension required to recruit a decaying component of extra force during stretch in tetanic contractions of frog skeletal muscle fibers. Journal of General Physiology, 78, 365–382.

    Article  CAS  Google Scholar 

  • Fleming, B. C., & Beynnon, B. D. (2004). In vivo measurement of ligament/tendon strains and forces: A review. Annals of Biomedical Engineering, 32, 318–328.

    Article  Google Scholar 

  • Fung, Y. C. (1993). Biomechanics. Springer.

    Book  Google Scholar 

  • Galeski, A., Kastelic, J., Baer, E., & Kohn, R. R. (1977). Mechanical and structural changes in rat tail tendon induced by alloxan diabetes and aging. Journal of Biomechanics, 10, 775–782.

    Article  CAS  Google Scholar 

  • Gollhofer, A., Komi, P. V., Fujitsuka, N., & Miyashita, M. (1987). Fatigue during stretch shortening cycle exercises. Changes in Neuromuscular activating patterns of human skeletal muscle. International Journal of Sports Medicine, 8, 38–47.

    Article  Google Scholar 

  • Goubel, F. (1987). Muscle mechanics, fundamental concepts in stretch-shortening cycle. Medicine and Science in Sports and Exercise, 26, 24–35.

    Article  Google Scholar 

  • Hill, A. V. (1938). The heat of shortening and dynamics constants of muscles. Proceedings of the Royal Society of London B, 126(843), 136–195.

    Google Scholar 

  • von Ingen Schenau, G. J. (1984). An alternative view of the concept of utilization of elastic energy on human movement. Human Movement Science, 3, 301–336.

    Article  Google Scholar 

  • Jozsa, L., & Kannus, P. (1997). Human tendons. Human Kinetics.

    Google Scholar 

  • Kastelic, J., Galeski, A., & Baer, E. (1978). The multicomposite structure of tendon. Connective Tissue Research, 6, 11–23.

    Article  CAS  Google Scholar 

  • Kennedy, J. C., Hawkins, R. J., Willis, R. B., & Danylchuck, K. D. (1976). Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. Journal of Bone and Joint Surgery, 58, 350–355.

    Article  CAS  Google Scholar 

  • Kjaer, M., Langberg, H., Miller, B. F., Boushel, R., Crameri, R., Koskinen, S., Heinemeier, K., Olesen, J. L., Dossing, S., Hansen, M., Pedersen, S. G., Rennie, M. J., & Magnusson, P. (2005). Metabolic activity and collagen turnover in human tendon in response to physical activity. Journal of Musculoskeletal and Neuronal Interactions, 5, 41–52.

    CAS  Google Scholar 

  • Kummer, B. (1979). Die Biomechanik des menschlichen Fußes. Praktische Orthopädie, 9, 41–52.

    Google Scholar 

  • Kummer, B. (2005). Biomechanik. Deutscher Ärzte-Verlag.

    Google Scholar 

  • Lauder, T. D., Dixit, S., Pezzin, L. E., Williams, M. V., Campbell, C. S., & Davis, G. D. (2000). The relation between stress fractures and bone mineral density: Evidence from active-duty Army women. Archives of Physical Medicine and Rehabilitation, 81, 73–79.

    Article  CAS  Google Scholar 

  • Malinin, T. I., Levitt, R. L., Bashore, C., Temple, H. T., & Mnaymneh, W. (2002). A study of retrieved allografts used to replace anterior cruciate ligaments. Arthroscopy, 18, 163–170.

    Article  Google Scholar 

  • Martin, R. B., Burr, D. B., Sharkey, N. A., & Fyhrie, D. (2015). Skeletal tissue mechanics (2. Aufl.). Springer.

    Google Scholar 

  • Mow, V. C., & Hayes, W. C. (1997). Basic Orthopaedic Biomechanics. Lippincott-Raven.

    Google Scholar 

  • Nordin, M., & Frankel, V. H. (2022). Basic biomechanics of the musculoskeletal system (5. Aufl.). Wolters Kluwer.

    Google Scholar 

  • Noyes, F. R., De, L. J., & Torvik, P. J. (1974). Biomechanics of anterior cruciate ligament failure: An analysis of strain-rate sensitivity and mechanisms of failure in primates. Journal of Bone and Joint Surgery, 56, 236–253.

    Article  CAS  Google Scholar 

  • Panjabi, M. M., & White, A. A. (2001). Biomechanics in the muscoloskeletal system. Churchill Livingstone.

    Google Scholar 

  • Ralphs, J. R., & Benjamin, M. (1999). Cell and matrix organization in tendons and ligaments. Harwood Academic.

    Google Scholar 

  • Rauber, A., & Kopsch, F. (1998). Anatomie des Menschen (2. Aufl., Bd. 1). Thieme.

    Google Scholar 

  • Reilly, D. T., & Burstein, A. H. (1974). Review article. The mechanical properties of cortical bone. Journal of Bone and Joint Surgery, 56, 1001–1022.

    Article  CAS  Google Scholar 

  • Ruben, J. A., & Bennett, A. A. (1987). The evolution of bone. Evolution, 41, 1187–1197.

    Article  Google Scholar 

  • Sackmann, E., & Merkel, R. (2022). Lehrbuch der Biophysik (2. Aufl.). Wiley.

    Google Scholar 

  • Shadwick, R. E. (1990). Elastic energy storage in tendons: Mechanical differences related to function and age. Journal of Applied Physiology, 68, 1033–1040.

    Article  CAS  Google Scholar 

  • Siegler, S., Block, J., & Schneck, C. D. (1988). The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot & Ankle International, 8, 234–242.

    Article  CAS  Google Scholar 

  • St. Pierre, R. K., Rosen, J., Whitesides, T. E., Szczukowski, M., Fleming, L. L., & Hutton, W. C. (1983). The tensile strength of the anterior talofibular ligament. Foot & Ankle International, 4, 83–85.

    Article  CAS  Google Scholar 

  • Woo, S. Y., Hollis, J. M., Adams, D. J., Lyon, R. M., & Takai, S. (1991). Tensile properties of human femur-anterior cruciate ligament-tibia complex. American Journal of Sports Medicine, 19, 217–225.

    Article  CAS  Google Scholar 

  • Woo, S. Y., Debski, R. E., Withrow, J. D., & Janaushek, M. A. (1999). Biomechanics of knee ligaments. American Journal of Sports Medicine, 27, 533–543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Alt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alt, W., Gollhofer, A. (2022). Mechanik, Belastbarkeit, Struktur und Funktionen biologischer Materialien – Sehnen, Bänder, Knochen, Knorpel und Muskeln. In: Güllich, A., Krüger, M. (eds) Sport. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64695-3_6

Download citation

Publish with us

Policies and ethics