Skip to main content

Molekularbiologische Verfahren

  • Chapter
  • First Online:
Lebensmittelanalytik

Zusammenfassung

Die DNA liegt in einer genau definierten Kopienzahl pro Zelle vor und ist chemisch und physikalisch relativ stabil, wodurch auch die Analyse von stark verarbeiteten Produkten, die beispielsweise thermisch behandelt wurden, möglich ist. Grundsätzlich muss vor jeder molekularbiologischen Analyse die zugrunde liegende DNA aus dem zu untersuchenden Lebensmittel isoliert, d. h. von störenden Begleitstoffen befreit werden. Im Rahmen der Lebensmittelanalytik spielen besonders PCR-basierte Methoden eine Rolle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Germini A et al (2004) Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J Agric Food Chem 52:3275–3280

    Article  CAS  Google Scholar 

  2. Klein G (2003) Anwendung molekularbiologischer Methoden in der Lebensmittelmikrobiologie am Beispiel probiotisch genutzter Laktobazillen. Berl Munch Tierarztl Wochenschr 116(11–12):510–516

    CAS  PubMed  Google Scholar 

  3. Näther G, Toutounian K, Ellerbroek L (2007) Genotypisierung von Campylobacter spp, mittels AFLP in wiederkehrend Campylobacter-positiven Masthähnchenherden. Arch Lebensmittelhyg 589(10):175–179

    Google Scholar 

  4. Waiblinger HU et al (2005) Die Untersuchung von transgenem Rapspollen in Honigen mittels Real-time-PCR. Deut Lebensm Rundsch 101(12):543–549

    CAS  Google Scholar 

  5. KMD: S 501 ff

    Google Scholar 

  6. Brackenridge JC, Bachelard HS (1969) Extraction and some properties of membrane-bound proteins from ox cerebral cortex microsomes. Int J Protein Res 1(3):157–168

    CAS  PubMed  Google Scholar 

  7. Dias R et al (2002) DNA-lipid systems. A physical chemistry study. Braz J Med Biol Res 35:509–522

    Article  CAS  Google Scholar 

  8. Mao Y et al (1994) DNA binding to crystalline silica characterized by Fourier-transform infrared spectroscopy. Environ Health Perspect 102(Suppl 10):165–171

    Article  CAS  Google Scholar 

  9. ASU L15.05-1

    Google Scholar 

  10. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  11. Müller HJ (2001) PCR – Polymerase-Kettenreaktion. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  12. Fischer M, Haase I (2006) PCR in der Lebensmittelanalytik – Bedeutung und Anwendungsbeispiele. GIT Labor-Fachzeitschrift 03:206–209. GIT Verlag, Darmstadt

    Google Scholar 

  13. Roux KH (1995) Optimization and troubleshooting in PCR. PCR Methods Appl 4:185–194

    Article  Google Scholar 

  14. Allmann M, Candrian U, Hofelein C, Liithy J (1993) Polymerase chain reaction (PCR): a possible alternative to immunochemical methods assuring safety and quality of food. Z Lebensm Unters Forsch 196:248–251

    Article  CAS  Google Scholar 

  15. Garciacanas V, Cifuentes A, Gonzalez R (2004) Detection of genetically modified organisms in food by DNA amplification techniques. Crit Rev Food Sci Nutr 44:425–436

    Article  CAS  Google Scholar 

  16. Malorny B, Tassios PT, Rådström P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83(1):39–48

    Article  CAS  Google Scholar 

  17. ENGL European Network of GMO Laboratories (2008) Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Technical Report by the Joint Research Centre, European Commission

    Google Scholar 

  18. Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (Hrsg) A‒Z of quantitative PCR Kapitel 3. International University Line (IUL), La Jolla, S 87–112

    Google Scholar 

  19. Pfaffl MW (2001) A new mathematic model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):45

    Article  Google Scholar 

  20. Maurer J (Hrsg) (2006) PCR methods in foods. Springer, New York

    Google Scholar 

  21. Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  Google Scholar 

  22. Mayer F et al (2012) Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J Agric Food Chem 60(6):1350–1357

    Article  CAS  Google Scholar 

  23. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – a review. Nucleos Nucleot Nucl 27:224–243

    Article  CAS  Google Scholar 

  24. Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3:227–239

    Article  CAS  Google Scholar 

  25. Li J, Macdonald J (2015) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211

    Article  CAS  Google Scholar 

  26. Madesis P, Ganopoulos I, Sakaridis I, Argiriou A, Tsaftaris A (2014) Advances of DNA-based methods for tracing the botanical origin of food products. Food Res Int 60:163–172

    Article  CAS  Google Scholar 

  27. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):63

    Article  Google Scholar 

  28. Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probe 16:223–229

    Article  CAS  Google Scholar 

  29. Vaagt F, Haase I, Fischer M (2013) Loop-mediated isothermal amplification (LAMP)-based method for rapid mushroom species identification. J Agri Food Chem 61:1833–1840

    Article  CAS  Google Scholar 

  30. Focke F, Haase I, Fischer M (2013) Loop-mediated isothermal amplification (LAMP): methods for plant species identification. Food J Agri Food Chem 61:2943–2949

    Article  CAS  Google Scholar 

  31. Metzker ML (2010) Applications of next-generation sequencing sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  32. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  Google Scholar 

  33. Liu L, Li YH, Li SL, Hu N, He YM, Pong R, Lin DN, Lu LH, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 251364

    Google Scholar 

  34. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  Google Scholar 

  35. Ku CS, Roukos DH (2013) From next-generation sequencing to nanopore sequencing technology: paving the way to personalized genomic medicine. Expert Rev Med Devic 10:1–6

    Article  CAS  Google Scholar 

  36. Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels JM, Cronk Q (2012) Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am J Bot 99:320–329

    Article  CAS  Google Scholar 

  37. Fischer C, Kallinich C, Klockmann S, Schrader J, Fischer M (2016) Automatized enrichment of sulfanilamide in milk matrices by utilization of aptamer linked magnetic particles. J Agric Food Chem 64:9246

    Article  CAS  Google Scholar 

  38. Hünniger T, Felbinger C, Wessels H, Mast S, Hoffmann A, Schefer A, Märtelbauer E, Paschke-Kratzin A, Fischer M (2015) Food targeting: a real-time PCR assay targeting 16S rDNA for direct quantification of Alicyclobacillus spp. spores after aptamer-based enrichment. J Agric Food Chem 63:4291

    Google Scholar 

  39. Vaagt F, Haase I, Fischer M (2013) Loop-mediated isothermal Amplification (LAMP) based method for rapid mushroom species identification. J Agric Food Chem 61:1833

    Article  CAS  Google Scholar 

  40. Wu J, Kodzius R, Cao W, Wen W (2013) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchimica Acta 181:1611

    Google Scholar 

  41. Sajid M, Kawde A, Muhammad D (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19:689

    Article  Google Scholar 

  42. Mark S, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153

    Article  CAS  Google Scholar 

  43. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  Google Scholar 

  44. Van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34(8):401–407

    Article  Google Scholar 

  45. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83. https://doi.org/10.1038/s41579-019-0299-x

    Article  CAS  PubMed  Google Scholar 

  46. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  47. Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58(4):568–574

    Article  CAS  Google Scholar 

  48. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  Google Scholar 

  49. Herrmann L, Haase I, Blauhut M, Barz N, Fischer M (2014) DNA-based differentiation of the Ecuadorian cocoa types CCN-51 and Arriba based on sequence differences in the chloroplast genome. J Agric Food Chem 62:12118–12127

    Article  CAS  Google Scholar 

  50. Scharf A, Lang C, Fischer M (2020) Genetic authentication: Differentiation of fine and bulk cocoa (Theobroma cacao L.) by a new CRISPR/Cas9-based in vitro method. Food Control 114:107219

    Google Scholar 

  51. EuGH – Urteil des Gerichtshof (Große Kammer) (2018) http://curia.europa.eu/juris/document/document.jsf?text=&docid=204387&pageIndex=0&doclang=DE&mode=req&dir=&occ=first&part=1&cid=732085

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Matissek .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matissek, R., Fischer, M. (2021). Molekularbiologische Verfahren. In: Lebensmittelanalytik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63409-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63409-7_13

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63408-0

  • Online ISBN: 978-3-662-63409-7

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics