Skip to main content

Operative Techniques: Kinematic Alignment

  • Chapter
  • First Online:
ESSKA Instructional Course Lecture Book
  • 1418 Accesses

Abstract

Over the last years, the dogma of mechanical alignment (MA) was fading. With aligning the femoral and tibial component perpendicular to the mechanical axis in the coronal plane, long-term survivorship and the restoration of the patient’s function was supposed to be superior compared to outliers beyond ±3° to the mechanical axis. Correcting the natural anatomy to neutral means to adapt the soft tissue envelop with the risk of instability and paradoxical kinematics, is referred to be a major reason for revision surgery. This might be a major reason why up to 25% of patients are dissatisfied with their TKA and 10% need revision within the first 10 years [1, 2]. Further, the natural constitution of the general population is not neutral [3], thus the correction of the limb to the mechanical axis requires several balancing steps [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker PN, van der Meulen JH, Lewsey J, Gregg PJ, National Joint Registry for E, Wales. The role of pain and function in determining patient satisfaction after total knee replacement. Data from the National Joint Registry for England and Wales. J Bone Joint Surg Br. 2007;89(7):893–900.

    Article  CAS  Google Scholar 

  2. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63.

    Article  Google Scholar 

  3. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470(1):45–53.

    Article  Google Scholar 

  4. Peters CL, Jimenez C, Erickson J, Anderson MB, Pelt CE. Lessons learned from selective soft-tissue release for gap balancing in primary total knee arthroplasty: an analysis of 1216 consecutive total knee arthroplasties: AAOS exhibit selection. J Bone Joint Surg Am. 2013;95(20):e152.

    Article  Google Scholar 

  5. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop Relat Res. 1993;(290):259–68.

    Google Scholar 

  6. Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, et al. Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II. J Bone Joint Surg Am. 2003;85-A(Suppl 4):97–104.

    Article  Google Scholar 

  7. Murakami K, Hamai S, Okazaki K, Ikebe S, Shimoto T, Hara D, et al. In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee. 2016;23(2):221–6.

    Article  Google Scholar 

  8. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82(8):1196–8.

    Article  CAS  Google Scholar 

  9. Howell SM, Papadopoulos S, Kuznik KT, Hull ML. Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2271–80.

    Article  Google Scholar 

  10. Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG. Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics. 2012;35(2):e160–9.

    PubMed  Google Scholar 

  11. Young SW, Walker ML, Bayan A, Briant-Evans T, Pavlou P, Farrington B, The Chitranjan S. Ranawat award: no difference in 2-year functional outcomes using kinematic versus mechanical alignment in TKA: a randomized controlled clinical trial. Clin Orthop Relat Res. 2017;475(1):9–20.

    Article  Google Scholar 

  12. Jo WL, Lee YK, Ha YC, Park MS, Lyu SH, Koo KH. Frequency, developing time, intensity, duration, and functional score of thigh pain after cementless total hip arthroplasty. J Arthroplast. 2016;31(6):1279–82.

    Article  Google Scholar 

  13. Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger M. PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1743–8.

    Article  Google Scholar 

  14. Waterson HB, Clement ND, Eyres KS, Mandalia VI, Toms AD. The early outcome of kinematic versus mechanical alignment in total knee arthroplasty: a prospective randomised control trial. Bone Joint J. 2016;98-B(10):1360–8.

    Article  CAS  Google Scholar 

  15. Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG. A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J. 2014;96-B(7):907–13.

    Article  CAS  Google Scholar 

  16. Matsumoto T, Takayama K, Ishida K, Hayashi S, Hashimoto S, Kuroda R. Radiological and clinical comparison of kinematically versus mechanically aligned total knee arthroplasty. Bone Joint J. 2017;99-B(5):640–6.

    Article  CAS  Google Scholar 

  17. Nam D, Lin KM, Howell SM, Hull ML. Femoral bone and cartilage wear is predictable at 0 degrees and 90 degrees in the osteoarthritic knee treated with total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):2975–81.

    Article  Google Scholar 

  18. Williams TG, Holmes AP, Bowes M, Vincent G, Hutchinson CE, Waterton JC, et al. Measurement and visualisation of focal cartilage thickness change by MRI in a study of knee osteoarthritis using a novel image analysis tool. Br J Radiol. 2010;83(995):940–8.

    Article  CAS  Google Scholar 

  19. Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthr Cartil. 2010;18(7):909–16.

    Article  CAS  Google Scholar 

  20. Nedopil AJ, Howell SM, Hull ML. What clinical characteristics and radiographic parameters are associated with patellofemoral instability after kinematically aligned total knee arthroplasty? Int Orthop. 2017;41(2):283–91.

    Article  Google Scholar 

  21. Ettinger M, Calliess T, Howell SM. Does a positioning rod or a patient-specific guide result in more natural femoral flexion in the concept of kinematically aligned total knee arthroplasty? Arch Orthop Trauma Surg. 2017;137(1):105–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Ettinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ettinger, M., Calliess, T. (2020). Operative Techniques: Kinematic Alignment. In: Hirschmann, M., Kon, E., Samuelsson, K., Denti, M., Dejour, D. (eds) ESSKA Instructional Course Lecture Book . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61264-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61264-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61263-7

  • Online ISBN: 978-3-662-61264-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics