Skip to main content

Basics of 2D Planning in Total Knee Replacement

  • Chapter
  • First Online:
ESSKA Instructional Course Lecture Book

Abstract

Preoperative planning in total knee arthroplasty is crucial for optimizing implant position and soft tissue balancing. Including a thorough history, a meticulous examination of the gait, the knee joint and surrounding joints forms the basis for adequate patient and implant selection and risk minimization. The verification of the diagnosis and a precise preoperative planning necessitate a standardized radiographic evaluation protocol. Providing this, limb alignment measurements, component sizing and alignment correction according to one’s preferred alignment concept can be carried out preoperatively and thereby accuracy in total knee replacement is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Insall J, Scott WN, Ranawat CS. The total condylar knee prosthesis. A report of two hundred and twenty cases. J Bone Joint Surg Am. 1979;61(2):173–80.

    Article  CAS  Google Scholar 

  2. Rienmuller A, Guggi T, Gruber G, Preiss S, Drobny T. The effect of femoral component rotation on the five-year outcome of cemented mobile bearing total knee arthroplasty. Int Orthop. 2012;36(10):2067–72. https://doi.org/10.1007/s00264-012-1628-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kniesel B, Konstantinidis L, Hirschmuller A, Sudkamp N, Helwig P. Digital templating in total knee and hip replacement: an analysis of planning accuracy. Int Orthop. 2014;38(4):733–9. https://doi.org/10.1007/s00264-013-2157-1.

    Article  PubMed  Google Scholar 

  4. Peek AC, Bloch B, Auld J. How useful is templating for total knee replacement component sizing? Knee. 2012;19(4):266–9. https://doi.org/10.1016/j.knee.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  5. Tanzer M, Makhdom AM. Preoperative planning in primary total knee arthroplasty. J Am Acad Orthop Surg. 2016;24(4):220–30. https://doi.org/10.5435/JAAOS-D-14-00332.

    Article  PubMed  Google Scholar 

  6. Kotze MJ. Prosthetic joint infection, dental treatment and antibiotic prophylaxis. Orthop Rev (Pavia). 2009;1(1):e7. https://doi.org/10.4081/or.2009.e7.

    Article  Google Scholar 

  7. Macaulay W, Geller JA, Brown AR, Cote LJ, Kiernan HA. Total knee arthroplasty and parkinson disease: enhancing outcomes and avoiding complications. J Am Acad Orthop Surg. 2010;18(11):687–94.

    Article  Google Scholar 

  8. Mullaji A, Shetty GM. Persistent hindfoot valgus causes lateral deviation of weightbearing axis after total knee arthroplasty. Clin Orthop Relat Res. 2011;469(4):1154–60. https://doi.org/10.1007/s11999-010-1703-z.

    Article  PubMed  Google Scholar 

  9. Gandhi R, de Beer J, Leone J, Petruccelli D, Winemaker M, Adili A. Predictive risk factors for stiff knees in total knee arthroplasty. J Arthroplast. 2006;21(1):46–52. https://doi.org/10.1016/j.arth.2005.06.004.

    Article  Google Scholar 

  10. Kanekasu K, Kondo M, Kadoya Y. Axial radiography of the distal femur to assess rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. 2005;434:193–7.

    Article  Google Scholar 

  11. Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y, Yu W, Genant HK. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skelet Radiol. 2003;32(3):128–32. https://doi.org/10.1007/s00256-002-0603-z.

    Article  CAS  Google Scholar 

  12. Kan H, Arai Y, Kobayashi M, Nakagawa S, Inoue H, Hino M, Komaki S, Ikoma K, Ueshima K, Fujiwara H, Yokota I, Kubo T. Fixed-flexion view X-ray of the knee superior in detection and follow-up of knee osteoarthritis. Medicine (Baltimore). 2017;96(49):e9126. https://doi.org/10.1097/MD.0000000000009126.

    Article  Google Scholar 

  13. Pinsornsak P, Naratrikun K, Kanitnate S, Sangkomkamhang T. The one-leg standing radiograph: an improved technique to evaluate the severity of knee osteoarthritis. Bone Joint Res. 2016;5(9):436–41. https://doi.org/10.1302/2046-3758.59.BJR-2016-0049.R1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kan H, Arai Y, Kobayashi M, Nakagawa S, Inoue H, Hino M, Komaki S, Ikoma K, Ueshima K, Fujiwara H, Kubo T. Radiographic measurement of joint space width using the fixed flexion view in 1,102 knees of Japanese patients with osteoarthritis in comparison with the standing extended view. Knee Surg Relat Res. 2017;29(1):63–8. https://doi.org/10.5792/ksrr.16.046.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Merchant AC. Patellofemoral imaging. Clin Orthop Relat Res. 2001;389:15–21. https://doi.org/10.1097/00003086-200108000-00004.

    Article  Google Scholar 

  16. Paley D. Principles of deformity correction. Berlin: Springer; 2003.

    Google Scholar 

  17. Cobey JC, Sella E. Standardizing methods of measurement of foot shape by including the effects of subtalar rotation. Foot Ankle. 1981;2(1):30–6.

    Article  CAS  Google Scholar 

  18. Maquet P. Biomechanics of gonarthrosis. Acta Orthop Belg. 1972;38(Suppl 1):33–54.

    PubMed  Google Scholar 

  19. Paley D. What is alignment and malalignment? In: Thienpont E, editor. Improving accuracy in knee arthroplasty, vol. 1. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd; 2012.

    Google Scholar 

  20. Pietsch M, Hofmann S. Value of radiographic examination of the knee joint for the orthopedic surgeon. Radiologe. 2006;46(1):55–64. https://doi.org/10.1007/s00117-005-1292-0.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimoto K, Noguchi M, Yamada A, Nasu Y. Compensatory function of the subtalar joint for lower extremity malalignment. Adv Orthop. 2019;2019:7656878. https://doi.org/10.1155/2019/7656878.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Song SJ, Bae DK, Kim KI, Jeong HY. Changes in femoral posterior condylar offset, tibial posterior slope angle, and joint line height after cruciate-retaining total knee arthroplasty. Knee Surg Relat Res. 2016;28(1):27–33. https://doi.org/10.5792/ksrr.2016.28.1.27.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maestro A, Harwin SF, Sandoval MG, Vaquero DH, Murcia A. Influence of intramedullary versus extramedullary alignment guides on final total knee arthroplasty component position: a radiographic analysis. J Arthroplast. 1998;13(5):552–8.

    Article  CAS  Google Scholar 

  24. Denis K, Van Ham G, Bellemans J, Labey L, Sloten JV, Van Audekercke R, Van der Perre G, De Schutter J. How correctly does an intramedullary rod represent the longitudinal tibial axes? Clin Orthop Relat Res. 2002;397:424–33. https://doi.org/10.1097/00003086-200204000-00050.

    Article  Google Scholar 

  25. Baldini A, Traverso F. Alignment? How do we measure it? In: Thienpont E, editor. Improving accuracy in knee arthroplasty, vol. 1. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd; 2012.

    Google Scholar 

  26. Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplast. 2008;23(4):586–92. https://doi.org/10.1016/j.arth.2007.05.006.

    Article  Google Scholar 

  27. Han HS, Chang CB, Seong SC, Lee S, Lee MC. Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2008;16(4):373–7. https://doi.org/10.1007/s00167-008-0486-1.

    Article  PubMed  Google Scholar 

  28. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br. 2002;84(1):50–3.

    Article  CAS  Google Scholar 

  29. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101(1):101–4. https://doi.org/10.1148/101.1.101.

    Article  CAS  PubMed  Google Scholar 

  30. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Patella infera. Apropos of 128 cases. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1982;68(5):317–25.

    CAS  PubMed  Google Scholar 

  31. Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg Br. 1977;59(2):241–2.

    Article  CAS  Google Scholar 

  32. Rogers BA, Thornton-Bott P, Cannon SR, Briggs TW. Interobserver variation in the measurement of patellar height after total knee arthroplasty. J Bone Joint Surg Br. 2006;88(4):484–8. https://doi.org/10.1302/0301-620X.88B4.16407.

    Article  CAS  PubMed  Google Scholar 

  33. Hofmann S, Djahani O, Pietsch M. Frontal and sagittal alignment in knee arthroplasty. In: Thienpont E, editor. Improving accuracy in knee arthroplasty, vol. 1. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd; 2012.

    Google Scholar 

  34. Pierce TP, Jauregui JJ, Cherian JJ, Elmallah RK, Harwin SF, Mont MA. Is there an ideal patellar thickness following total knee arthroplasty? Orthopedics. 2016;39(1):e187–92. https://doi.org/10.3928/01477447-20151222-03.

    Article  PubMed  Google Scholar 

  35. Bengs BC, Scott RD. The effect of patellar thickness on intraoperative knee flexion and patellar tracking in total knee arthroplasty. J Arthroplast. 2006;21(5):650–5. https://doi.org/10.1016/j.arth.2005.07.020.

    Article  Google Scholar 

  36. Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res. 1999;366:155–63. https://doi.org/10.1097/00003086-199909000-00019.

    Article  Google Scholar 

  37. Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB. Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am. 2001;83(3):390–7. https://doi.org/10.2106/00004623-200103000-00011.

    Article  CAS  PubMed  Google Scholar 

  38. Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144–53. https://doi.org/10.1097/00003086-199811000-00021.

    Article  Google Scholar 

  39. Heesterbeek PJ, Jacobs WC, Wymenga AB. Effects of the balanced gap technique on femoral component rotation in TKA. Clin Orthop Relat Res. 2009;467(4):1015–22. https://doi.org/10.1007/s11999-008-0539-2.

    Article  PubMed  Google Scholar 

  40. Dennis DA, Komistek RD, Kim RH, Sharma A. Gap balancing versus measured resection technique for total knee arthroplasty. Clin Orthop Relat Res. 2010;468(1):102–7. https://doi.org/10.1007/s11999-009-1112-3.

    Article  PubMed  Google Scholar 

  41. Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP. The geometry of the trochlear groove. Clin Orthop Relat Res. 2010;468(3):782–8. https://doi.org/10.1007/s11999-009-1156-4.

    Article  PubMed  Google Scholar 

  42. Hungerford DS, Kenna RV, Krackow KA. The porous-coated anatomic total knee. Orthop Clin North Am. 1982;13(1):103–22.

    CAS  PubMed  Google Scholar 

  43. Laskin RS. Flexion space configuration in total knee arthroplasty. J Arthroplast. 1995;10(5):657–60.

    Article  CAS  Google Scholar 

  44. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res. 1993;286:40–7.

    Google Scholar 

  45. Griffin FM, Insall JN, Scuderi GR. The posterior condylar angle in osteoarthritic knees. J Arthroplast. 1998;13(7):812–5.

    Article  CAS  Google Scholar 

  46. Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res. 1995;321:168–72.

    Google Scholar 

  47. Olcott CW, Scott RD. A comparison of 4 intraoperative methods to determine femoral component rotation during total knee arthroplasty. J Arthroplast. 2000;15(1):22–6.

    Article  CAS  Google Scholar 

  48. Jenny JY, Boeri C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand. 2004;75(1):74–7. https://doi.org/10.1080/00016470410001708150.

    Article  PubMed  Google Scholar 

  49. Kinzel V, Ledger M, Shakespeare D. Can the epicondylar axis be defined accurately in total knee arthroplasty? Knee. 2005;12(4):293–6. https://doi.org/10.1016/j.knee.2004.09.003.

    Article  PubMed  Google Scholar 

  50. Franceschini V, Nodzo SR, Gonzalez Della Valle A. Femoral component rotation in total knee arthroplasty: a comparison between transepicondylar axis and posterior condylar line referencing. J Arthroplast. 2016;31(12):2917–21. https://doi.org/10.1016/j.arth.2016.05.032.

    Article  Google Scholar 

  51. Patel AR, Talati RK, Yaffe MA, McCoy BW, Stulberg SD. Femoral component rotation in total knee arthroplasty: an MRI-based evaluation of our options. J Arthroplast. 2014;29(8):1666–70. https://doi.org/10.1016/j.arth.2014.02.033.

    Article  Google Scholar 

  52. Ng CK, Chen JY, Yeh JZY, Ho JPY, Merican AM, Yeo SJ. Distal femoral rotation correlates with proximal tibial joint line obliquity: a consideration for kinematic total knee arthroplasty. J Arthroplast. 2018;33(6):1936–44. https://doi.org/10.1016/j.arth.2017.12.025.

    Article  Google Scholar 

  53. Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K. Rotational deformity in varus osteoarthritis of the knee: analysis with computed tomography. Clin Orthop Relat Res. 2005;433:147–51. https://doi.org/10.1097/01.blo.0000150465.29883.83.

    Article  Google Scholar 

  54. Hirschmann MT, Becker R, Tandogan R, Vendittoli PA, Howell S. Alignment in TKA: what has been clear is not anymore! Knee Surg Sports Traumatol Arthrosc. 2019;27(7):2037–9. https://doi.org/10.1007/s00167-019-05558-4.

    Article  PubMed  Google Scholar 

  55. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br. 1991;73(5):709–14.

    Article  CAS  Google Scholar 

  56. Abdel MP, Oussedik S, Parratte S, Lustig S, Haddad FS. Coronal alignment in total knee replacement: historical review, contemporary analysis, and future direction. Bone Joint J. 2014;96-B(7):857–62. https://doi.org/10.1302/0301-620X.96B7.33946.

    Article  CAS  PubMed  Google Scholar 

  57. Riviere C, Iranpour F, Auvinet E, Howell S, Vendittoli PA, Cobb J, Parratte S. Alignment options for total knee arthroplasty: a systematic review. Orthop Traumatol Surg Res. 2017;103(7):1047–56. https://doi.org/10.1016/j.otsr.2017.07.010.

    Article  CAS  PubMed  Google Scholar 

  58. Blakeney W, Clement J, Desmeules F, Hagemeister N, Riviere C, Vendittoli PA. Kinematic alignment in total knee arthroplasty better reproduces normal gait than mechanical alignment. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1410–7. https://doi.org/10.1007/s00167-018-5174-1.

    Article  PubMed  Google Scholar 

  59. Niki Y, Nagura T, Nagai K, Kobayashi S, Harato K. Kinematically aligned total knee arthroplasty reduces knee adduction moment more than mechanically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018;26(6):1629–35. https://doi.org/10.1007/s00167-017-4788-z.

    Article  PubMed  Google Scholar 

  60. Luo Z, Zhou K, Peng L, Shang Q, Pei F, Zhou Z. Similar results with kinematic and mechanical alignment applied in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019. https://doi.org/10.1007/s00167-019-05584-2.

  61. Riley J, Roth JD, Howell SM, Hull ML. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3238–48. https://doi.org/10.1007/s00167-018-4841-6.

    Article  PubMed  Google Scholar 

  62. Riley J, Roth JD, Howell SM, Hull ML. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2018;26(6):1618–28. https://doi.org/10.1007/s00167-017-4776-3.

    Article  PubMed  Google Scholar 

  63. Shelton TJ, Howell SM, Hull ML. A total knee arthroplasty is stiffer when the intraoperative tibial force is greater than the native knee. J Knee Surg. 2019;32(10):1008–14. https://doi.org/10.1055/s-0038-1675421.

    Article  PubMed  Google Scholar 

  64. Hirschmann MT, Hess S, Behrend H, Amsler F, Leclercq V, Moser LB. Phenotyping of hip-knee-ankle angle in young non-osteoarthritic knees provides better understanding of native alignment variability. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1378–84. https://doi.org/10.1007/s00167-019-05507-1.

    Article  PubMed  Google Scholar 

  65. Moser LB, Hess S, Amsler F, Behrend H, Hirschmann MT. Native non-osteoarthritic knees have a highly variable coronal alignment: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1359–67. https://doi.org/10.1007/s00167-019-05417-2.

    Article  PubMed  Google Scholar 

  66. Hirschmann MT, Moser LB, Amsler F, Behrend H, Leclercq V, Hess S. Phenotyping the knee in young non-osteoarthritic knees shows a wide distribution of femoral and tibial coronal alignment. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1385–93. https://doi.org/10.1007/s00167-019-05508-0.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fink, C., Abermann, E. (2020). Basics of 2D Planning in Total Knee Replacement. In: Hirschmann, M., Kon, E., Samuelsson, K., Denti, M., Dejour, D. (eds) ESSKA Instructional Course Lecture Book . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61264-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61264-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61263-7

  • Online ISBN: 978-3-662-61264-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics