Skip to main content

Pathophysiology of Anterior Knee Pain

  • Chapter
  • First Online:
Book cover Patellofemoral Pain, Instability, and Arthritis

Abstract

Anterior knee pain (AKP) is the most common reason for adolescents, adults, and physically active people to consult with an orthopedic surgeon who specializes in the knee [1]. Despite the high incidence and prevalence of AKP [2] and an abundance of clinical and basic science research, the etiology of the disorder is often difficult to pinpoint. However, it is typically thought to be multifactorial, which can complicate its treatment [3, 4]. The objective of this paper is to analyze the structural and functional changes that accompany AKP in order to define a logical therapeutic approach. This chapter synthesizes our research and clinical experience on pathophysiology of AKP in the young patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanchis-Alfonso V, McConnell J, Monllau JC, Fulkerson JP. Diagnosis and treatment of anterior knee pain. JISAKOS. 2016; https://doi.org/10.1136/jisakos-2015-000033.

    Article  Google Scholar 

  2. Boling M, Padua D, Marshall S, et al. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports. 2010;20:725–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sanchis-Alfonso V. Holistic approach to understanding anterior knee pain. Clinical implications. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2275–85.

    Article  PubMed  Google Scholar 

  4. Sanchis-Alfonso V, Dye SF. How to deal with anterior knee pain in the active young patient. Sports Health. 2017;9(4):346–51.

    Article  PubMed  Google Scholar 

  5. Büdinger K. Üeber ablösung von gelenkteilen und verwandte prozesse. Dtsch Z Chir. 1906;84:311–65.

    Article  Google Scholar 

  6. Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res. 2005;436:100–10.

    Article  Google Scholar 

  7. Royle SG, Noble J, Davies DR, et al. The significance of chondromalacic changes on the patella. Arthroscopy. 1991;7(2):158–60.

    Article  PubMed  CAS  Google Scholar 

  8. International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for; 2016

    Google Scholar 

  9. Ficat P, Ficat C, Bailleux A. Syndrome d’hyperpression externe de la rotule (S.H.P.E). Rev Chir Orthop. 1975;61:39–59.

    PubMed  CAS  Google Scholar 

  10. Ficat P, Hungerford DS. Disorders of the patello-femoral joint. Baltimore, MD: Williams & Wilkins; 1977.

    Google Scholar 

  11. Hughston JC. Subluxation of the patella. J Bone Joint Surg. 1968;50-A:1003–26.

    Article  Google Scholar 

  12. Insall J. "Chondromalacia patellae": patellar malalignment syndrome. Orthop Clin North Am. 1979;10:117–27.

    PubMed  CAS  Google Scholar 

  13. Merchant AC, Mercer RL. Lateral release of the patella: a preliminary report. Clin Orthop Relat Res. 1974;103:40.

    Article  Google Scholar 

  14. Staeubli HU, Bosshard C, Porcellini P, et al. Magnetic resonance imaging for articular cartilage: cartilage-bone mismatch. Clin Sports Med. 2002;21:417–33.

    Article  PubMed  Google Scholar 

  15. James SL. Chondromalacia of the patella in the adolescent. In: Kennedy JC, editor. The injured adolescent knee. Baltimore, MD: The Williams & Wilkins Company; 1979.

    Google Scholar 

  16. Teitge RA. Orthopaedic knowledge update 3 home study syllabus American Academy of Orthopaedic Surgeons, Park Ridge, IL. 1990:563–567

    Google Scholar 

  17. Meister K, James SL. Proximal tibial derotation osteotomy for anterior knee pain in the miserably malaligned extremity. Am J Orthop (Belle Mead NJ). 1995;24:149–55.

    CAS  Google Scholar 

  18. Cooke TD, Price N, Fisher B, et al. The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clin Orthop Relat. 1990;260:56–60.

    Article  Google Scholar 

  19. Dye SF. The knee as a biologic transmission with an envelope of function: a theory. Clin Orthop Relat Res. 1996;325:10–8.

    Article  Google Scholar 

  20. Dye SF, Staubli HU, Biedert RM, et al. The mosaic of pathophysiology causing patellofemoral pain: therapeutic implications. Oper Techn Sports Med. 1999;7:46–54.

    Article  Google Scholar 

  21. Sanchis-Alfonso V. Anterior knee pain and patellar instability. London: Springer; 2011.

    Book  Google Scholar 

  22. Sanchis-Alfonso V, Gastaldi-Orquín E, Martinez-SanJuan V. Usefulness of computed tomography in evaluating the patellofemoral joint before and after Insall’s realignment. Correlation with short-term clinical results. Am J Knee Surg. 1994;7:65–72.

    Google Scholar 

  23. Sanchis-Alfonso V, Roselló-Sastre E, Martinez-SanJuan V. Pathogenesis of anterior knee pain syndrome and functional patellofemoral instability in the active young. A review. Am J Knee Surg. 1999;12:29–40.

    PubMed  CAS  Google Scholar 

  24. Dye SF. Functional anatomy and biomechanics of the patellofemoral joint. In: Scott WN, editor. The knee. St. Louis: Mosby; 1994. p. 381–9.

    Google Scholar 

  25. Dye SF. Forward. In: Fulkerson JP, editor. Disorders of the patellofemoral joint. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2004. p. xi–xii.

    Google Scholar 

  26. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop. 1979;144:9–15.

    Google Scholar 

  27. Reilly DT, Martens M. Experimental analysis of the quadriceps muscle force and patellofemoral joint reaction force for various activities. Acta Orthop Scand. 1972;73:146–37.

    Google Scholar 

  28. Smith AJ. Estimates of muscle and joint force at the knee and ankle during jumping activities. J Hum Mov Stud. 1975;1:78–86.

    Google Scholar 

  29. Steinkamp LA, Dillinghan MF, Markel MD, et al. Biomechanical considerations in patellofemoral joint rehabilitation. Am J Sports Med. 1993;21:438–44.

    Article  PubMed  CAS  Google Scholar 

  30. Van Haver A, De Roo K, De Beule M, et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med. 2015;43(6):1354–61.

    Article  PubMed  Google Scholar 

  31. Powers CM. Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther. 2000;80(10):965–78.

    Article  PubMed  CAS  Google Scholar 

  32. Ho KY, Hu HH, Colletti PM, et al. Recreational runners with patellofemoral pain exhibit elevated patella water content. Magn Reson Imaging. 2014;32(7):965–8.

    Article  PubMed  Google Scholar 

  33. Barton RS, Ostrowski ML, Anderson TD, et al. Intraosseous innervation of the human patella: a histologic study. Am J Sports Med. 2007;35:307–11.

    Article  PubMed  Google Scholar 

  34. Teitge RA. Patellofemoral syndrome a paradigm for current surgical strategies. Orthop Clin N Am. 2008;39(3):287–311.

    Article  Google Scholar 

  35. Teitge RA. Does lower limb torsion matter? Tech Knee Surg. 2012;11:137–46.

    Article  Google Scholar 

  36. van Kampen A, Huiskes R. The three-dimensional tracking pattern of the human patella. J Orthop Res. 1990;8(3):372–82.

    Article  PubMed  Google Scholar 

  37. Sanchis-Alfonso V, Roselló-Sastre E. Anterior knee pain in the young patient – what causes the pain? “Neural model”. Acta Orthop Scand. 2003;74:697–703.

    Article  PubMed  Google Scholar 

  38. Biedert RM, Sanchis-Alfonso V. Sources of anterior knee pain. Clin Sports Med. 2002;21:335–47.

    Article  PubMed  Google Scholar 

  39. Fulkerson JP. The etiology of patellofemoral pain in young active patients: a prospective study. Clin Orthop Relat Res. 1983;179:129–33.

    Google Scholar 

  40. Kasim N, Fulkerson JP. Resection of clinically localized segments of painful retinaculum in the treatment of selected patients with anterior knee pain. Am J Sports Med. 2000;28:811–4.

    Article  PubMed  CAS  Google Scholar 

  41. Sanchis-Alfonso V, Roselló-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A neuroanatomic basis for anterior knee pain in the active young patient. Am J Sports Med. 2000;28:725–31.

    Article  PubMed  CAS  Google Scholar 

  42. Sanchis-Alfonso V, Roselló-Sastre E, Revert F. Neural growth factor expression in the lateral retinaculum in painful patellofemoral malalignment. Acta Orthop Scand. 2001;72:146–9.

    Article  PubMed  CAS  Google Scholar 

  43. Sanchis-Alfonso V, Roselló-Sastre E, Revert F, et al. Histologic retinacular changes associated with ischemia in painful patellofemoral malalignment. Orthopedics. 2005;28:593–9.

    Article  PubMed  Google Scholar 

  44. Fulkerson JP, Tennant R, Jaivin JS, et al. Histologic evidence of retinacular nerve injury associated with patellofemoral malalignment. Clin Orthopn Relat Res. 1985;197:196–205.

    Google Scholar 

  45. Mori Y, Fujimoto A, Okumo H, et al. Lateral retinaculum release in adolescent patellofemoral disorders: its relationship to peripheral nerve injury in the lateral retinaculum. Bull Hosp Jt Dis Orthop Inst. 1991;51:218–29.

    PubMed  CAS  Google Scholar 

  46. Sanchis-Alfonso V, Roselló-Sastre E, Monteagudo-Castro C, et al. Quantitative analysis of nerve changes in the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A preliminary study. Am J Sports Med. 1998;26:703–9.

    Article  PubMed  CAS  Google Scholar 

  47. Baker V, Bennell K, Stillman B, Cowan S, Crossley K. Abnormal knee joint position sense in individuals with patellofemoral pain syndrome. J Orthop Res. 2002;20(2):208–14.

    Article  PubMed  Google Scholar 

  48. Grelsamer RP, McConnell J. The patella. A team approach. Gaithersburg, MD: An Aspen Publication; 1998.

    Google Scholar 

  49. Jerosch J, Prymka M. Knee joint proprioception in patients with posttraumatic recurrent patella dislocation. Knee Surg Sports Traumatol Arthrosc. 1996;4:14–8.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson AS, Lee HB. Hypothesis relevant to defective position sense in a damaged knee. J Neurol Neurosurg Psychiatry. 1986;49:1462–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jensen R, Hystad T, Kvale A, et al. Quantitative sensory testing of patients with long lasting patellofemoral pain syndrome. Eur J Pain. 2007;11:665–76.

    Article  PubMed  Google Scholar 

  52. Ahmed M, Bergstrom J, Lundblad H, et al. Sensory nerves in the interface membrane of aseptic loose hip prostheses. J Bone Joint Surg. 1998;80-B:151–5.

    Article  Google Scholar 

  53. Ashton IK, Ashton BA, Gibson SJ, et al. Morphological basis for back pain: the demonstration of nerve fibers and neuropeptides in the lumbar facet joint capsule but not in ligamentum flavum. J Orthop Res. 1992;10:72–8.

    Article  PubMed  CAS  Google Scholar 

  54. Ashton IK, Roberts S, Jaffray DC. Neuropeptides in the human intervertebral disc. J Orthop Res. 1994;12:186–92.

    Article  PubMed  CAS  Google Scholar 

  55. Ashton IK, Walsh DA, Polak JM, et al. Substance P in intervertebral discs. Binding sites on vascular endothelium of the human annulus fibrosus. Acta Orthop Scand. 1994;65:635–9.

    Article  PubMed  CAS  Google Scholar 

  56. Coppes MH, Marani E, Thomeer RT, et al. Innervation of “painful” lumbar discs. Spine. 1997;22:2342–9.

    Article  PubMed  CAS  Google Scholar 

  57. Freemont AJ, Peacock TE, Goupille P, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet. 1997;350:178–81.

    Article  PubMed  CAS  Google Scholar 

  58. Grönblad M, Weinstein JN, Santavirta S. Immunohistochemical observations on spinal tissue innervation. A review of hypothetical mechanisms of back pain. Acta Orthop Scand. 1991;62:614–22.

    Article  PubMed  Google Scholar 

  59. Kocher MS, Fu FH, Harner CHD. Neuropathophysiology. In: Fu FH, Harner CD, Vince KG, editors. Knee surgery. Baltimore, MD: Williams and Wilkins; 1994. p. 231–49.

    Google Scholar 

  60. Konttinen YT, Grönblad M, Antti-Poika I, et al. Neuroimmunohistochemical analysis of peridiscal nociceptive neural elements. Spine. 1990;15:383–6.

    Article  PubMed  CAS  Google Scholar 

  61. Korkala O, Grönblad M, Liesi P, et al. Immunohistochemical demonstration of nociceptors in the ligamentous structures of the lumbar spine. Spine. 1985;10:156–7.

    Article  PubMed  CAS  Google Scholar 

  62. Palmgren T, Grönblad M, Virri J, et al. Immunohistochemical demonstration of sensory and autonomic nerve terminals in herniated lumbar disc tissue. Spine. 1996;21:1301–6.

    Article  PubMed  CAS  Google Scholar 

  63. Witonski D, Wagrowska-Danielewicz M. Distribution of substance-P nerve fibers in the knee joint in patients with anterior knee pain syndrome. Knee Surg Sports Traumatol Arthrosc. 1999;7:177–83.

    Article  PubMed  CAS  Google Scholar 

  64. Wojtys EM, Beaman DN, Glover RA, et al. Innervation of the human knee joint by substance-P fibers. Arthroscopy. 1990;6:254–63.

    Article  PubMed  CAS  Google Scholar 

  65. Byers PD. Solitary benign osteoblastic lesions of bone. Osteoid osteoma benign osteoblastoma. Cancer. 1968;22:43–57.

    Article  PubMed  CAS  Google Scholar 

  66. Alfredson H, Ohberg L, Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis?. An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc. 2003;11:334–8.

    Article  PubMed  Google Scholar 

  67. Sanchis-Alfonso V, Roselló-Sastre E, Subías-López A. Neuroanatomic basis for pain in patellar tendinosis (“jumper’s knee”): a neuroimmunohistochemical study. Am J Knee Surg. 2001;14:174–7.

    PubMed  CAS  Google Scholar 

  68. Hasegawa T, Hirose T, Sakamoto R, et al. Mechanism of pain in osteoid osteomas: an immunohistochemical study. Histopathology. 1993;22:487–91.

    Article  PubMed  CAS  Google Scholar 

  69. Grönblad M, Korkala O, Konttinen YT, et al. Silver impregnation and immunohistochemical study of nerves in lumbar facet joint plical tissue. Spine. 1991;16:34–8.

    Article  PubMed  Google Scholar 

  70. Dicou E, Pflug B, Magazin M, et al. Two peptides derived from the nerve growth factor precursor are biologically active. J Cell Biol. 1997;136:389–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gigante A, Bevilacqua C, Ricevuto A, et al. Biological aspects in patello-femoral malalignment. 11th congress European Society of Sports Traumatology, knee surgery and arthroscopy. Book of abstracts. Athens 5–8 May; 2004

    Google Scholar 

  72. Malcangio M, Garrett NE, Cruwys S, et al. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci. 1997;17:8459–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Abe T, Morgan DA, Gutterman DD. Protective role of nerve growth factor against postischemic dysfunction of sympathetic coronary innervation. Circulation. 1997;95:213–20.

    Article  PubMed  CAS  Google Scholar 

  74. Lee TH, Kato H, Kogure K, et al. Temporal profile of nerve growth factor-like immunoreactivity after transient focal cerebral ischemia in rats. Brain Res. 1996;713:199–210.

    Article  PubMed  CAS  Google Scholar 

  75. Isaacson LG, Crutcher KA. The duration of sprouted cerebrovascular axons following intracranial infusion of nerve growth factor. Exp Neurol. 1995;13:174–9.

    Article  Google Scholar 

  76. Kawaja MD. Sympathetic and sensory innervation of the extracerebral vasculature: roles for p75NTR neuronal expression and nerve growth factor. J Neurosci Res. 1998;52:295–306.

    Article  PubMed  CAS  Google Scholar 

  77. Society for Ultrastructural Pathology. Handbook of diagnostic electron microscopy for pathologists-in-training. New York/Tokyo: Igaku-Shoin Medical Publishers Committee; 1995.

    Google Scholar 

  78. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5.

    Article  PubMed  CAS  Google Scholar 

  79. Liu Y, Cox SR, Morita T, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res. 1995;77:638–43.

    Article  PubMed  CAS  Google Scholar 

  80. Minchenko A, Bauer T, Salceda S, et al. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Investig. 1994;71:374–9.

    PubMed  CAS  Google Scholar 

  81. Nagashima M, Yoshino S, Ishiwata T, et al. Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J Rheumatol. 1995;22:1624–30.

    PubMed  CAS  Google Scholar 

  82. Yamada T, Sawatsubashi M, Yakushiji H, et al. Localization of vascular endothelial growth factor in synovial membrane mast cells: examination with “multilabelling subtraction immunostaining”. Virchows Arch. 1998;433:567–70.

    Article  PubMed  CAS  Google Scholar 

  83. Jackson JR, Minton JAL, Ho ML, et al. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1ß. J Rheumatol. 1997;24:1253–9.

    PubMed  CAS  Google Scholar 

  84. Pufe T, Petersen W, Tillmann B, et al. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 2001;44:1082–8.

    Article  PubMed  CAS  Google Scholar 

  85. Calzà L, Giardino L, Giuliani A, et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci U S A. 2001;98:4160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Woolf CJ, Allchorne A, Safieh-Garabedian B, et al. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997;121:417–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sandow MJ, Goodfellow JW. The natural history of anterior knee pain in adolescents. J Bone Joint Surg. 1985;67-B:36–8.

    Article  Google Scholar 

  88. Selfe J, Karki A, Stevens D. A review of the role of circulatory deficit in the genesis of patellofemoral pain. Phys Ther Rev. 2002;7:169–72.

    Article  Google Scholar 

  89. Selfe J, Harper L, Pedersen I, et al. Cold legs: a potential indicator of negative outcome in the rehabilitation of patients with patellofemoral pain syndrome. Knee. 2003;10:139–43.

    Article  PubMed  CAS  Google Scholar 

  90. Gelfer Y, Pinkas L, Horne T, et al. Symptomatic transient patellar ischemia following total knee replacement as detected by scintigraphy. A prospective, randomized, double-blind study comparing the mid-vastus to the medial para-patellar approach. Knee. 2003;10:341–5.

    Article  PubMed  Google Scholar 

  91. Naslund J. Patellofemoral pain syndrome. Clinical and pathophysiological considerations. Thesis. Karolinska Institutet, Stockholm; 2006

    Google Scholar 

  92. Moayedi M. All roads lead to the insula. Pain. 2014;155(10):1920–1.

    Article  PubMed  Google Scholar 

  93. Greenwald JD, Shafritz KM. An integrative neuroscience framework for the treatment of chronic pain: from cellular alterations to behavior. Front Integr Neurosci. 2018;12:1–16.

    Article  CAS  Google Scholar 

  94. Thorp SL, Suchy T, Vadivelu N, Helander EM, Urman RD, Kaye AD. Functional connectivity alterations: novel therapy and future implications in chronic pain management. Pain Physician. 2018;21(1):E207–14.

    Article  PubMed  Google Scholar 

  95. Flodin P, Martinsen S, Altawil R, Waldheim E, Lampa J, Kosek E, et al. Intrinsic brain connectivity in chronic pain: a resting-state fMRI study in patients with rheumatoid arthritis. Front Hum Neurosci. 2016;10:107.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Martí-Bonmatí L, Lull JJ, García-Martí G, et al. Chronic auditory hallucinations in schizophrenic patients: MR analysis of the coincidence between functional and morphologic abnormalities. Radiology. 2007;244:549–56.

    Article  PubMed  Google Scholar 

  97. Pool EM, Rehme AK, Eickhoff SB, et al. Functional resting-state connectivity of the human motor network: differences between right- and left-handers. NeuroImage. 2015;109:298–306.

    Article  PubMed  Google Scholar 

  98. Xiao X, Zhang YQ. A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev. 2018;90:200–11.

    Article  PubMed  Google Scholar 

  99. Lloyd DM, Helbig T, Findlay G, et al. Brain areas involved in anticipation of clinically relevant pain in low back pain populations with high levels of pain behavior. J Pain. 2016;17(5):577–87.

    Article  PubMed  Google Scholar 

  100. Watanabe K, Hirano S, Kojima K, et al. Altered cerebral blood flow in the anterior cingulate cortex is associated with neuropathic pain. J Neurol Neurosurg Psychiatry. 2018;89(10):1082–7.

    Article  PubMed  Google Scholar 

  101. Cabeza R, Ciaramelli E, Moscovitch M. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn Sci. 2012;16(6):338–52.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Humphreys GF, Lambon Ralph MA. Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex. 2015;25(10):3547–60.

    Article  PubMed  Google Scholar 

  103. Ioannidis JPA. The proposal to lower P value threshold to.005. JAMA. 2018;319:1429–30.

    Article  PubMed  Google Scholar 

  104. Damasio AR, Grabowky TJ, Bechara A, Damasio H, Ponto LLB, Parvizi J, Hichwa RD. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.

    Article  PubMed  CAS  Google Scholar 

  105. Rathleff MS, Petersen KK, Arendt-Nielsen L, Thorborg K, Graven-Nielsen T. Impaired conditioned pain modulation in young female adults with long-standing patellofemoral pain: a single blinded cross-sectional study. Pain Med. 2016;17(5):980–8.

    PubMed  Google Scholar 

  106. De Oliveira SD, Rathleff MS, Petersen K, Azevedo FM, Barton CJ. Manifestations of pain sensitization across different painful knee disorders: a systematic review including meta-analysis and metaregression. Pain Med. 2019;20(2):335–58. https://doi.org/10.1093/pm/pny177.

    Article  Google Scholar 

  107. Rathleff MS, Roos EM, Olesen JL, Rasmussen S, Arendt-Nielsen L. Lower mechanical pressure pain thresholds in female adolescents with patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2013;43(6):414–21.

    Article  PubMed  Google Scholar 

  108. Rathleff MS, Roos EM, Olesen JL, Rasmussen S, Arendt-Nielsen L. Self-reported recovery is associated with improvement in localized hyperalgesia among adolescent females with patellofemoral pain: results from a cluster randomized trial. Clin J Pain. 2016;32(5):428–34.

    Article  PubMed  Google Scholar 

  109. Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67:1568–74.

    Article  PubMed  CAS  Google Scholar 

  110. Young NA, Sharma M, Deogaonkar M. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin N Am. 2014;25(4):819–32.

    Article  PubMed  Google Scholar 

  111. Domenech J, Sanchis-Alfonso V, López L, Espejo B. Influence of kinesiophobia and catastrophizing on pain and disability in anterior knee pain patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(7):1562–8.

    Article  PubMed  Google Scholar 

  112. Doménech J, Sanchis-Alfonso V, Espejo B. Changes in catastrophizing and kinesiophobia are predictive of changes in disability and pain after treatment in patients with anterior knee pain. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2295–300.

    Article  PubMed  Google Scholar 

  113. Sanchis-Alfonso V, Montesinos-Berry E, Domenech J. Catastrophic thinking is a new puzzle piece in understanding anterior knee pain. Orthopaedics Today Europe, The Official Newspaper of EFORT. 2014;17(2):44–50

    Google Scholar 

  114. Gracely RH. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain. 2004;127:835–43.

    Article  PubMed  CAS  Google Scholar 

  115. Powers CM, Bolgla LA, Callaghan MJ, et al. Patellofemoral pain: proximal, distal, and local factors, 2nd international research retreat. J Orthop Sports Phys Ther. 2012;42:A1–54.

    Article  PubMed  Google Scholar 

  116. Soifer TB, Levy HJ, Soifer FM, et al. Neurohistology of the subacromial space. Arthroscopy. 1996;12:182–6.

    Article  PubMed  CAS  Google Scholar 

  117. Solomonow M, D’Ambrosia R. Neural reflex arcs and muscle control of knee stability and motion. In: Scott WN, editor. Ligament and extensor mechanism injuries of the knee: diagnosis and treatment. Mosby-Year Book: St. Louis, MO; 1991. p. 389–400.

    Google Scholar 

  118. Nilsson G, Forsberg-Nilsson K, Xiang Z, et al. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol. 1997;27:2295–301.

    Article  PubMed  CAS  Google Scholar 

  119. Sherman BE, Chole RA. A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg. 1995;113:569–81.

    PubMed  CAS  Google Scholar 

  120. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004;140:441–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchis-Alfonso, V., Ramírez-Fuentes, C., Roselló-Sastre, E., Dye, S.F., Teitge, R.A. (2020). Pathophysiology of Anterior Knee Pain. In: Dejour, D., Zaffagnini, S., Arendt, E., Sillanpää, P., Dirisamer, F. (eds) Patellofemoral Pain, Instability, and Arthritis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61097-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61097-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61096-1

  • Online ISBN: 978-3-662-61097-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics