Skip to main content

Magnetic Resonance Imaging of the Patellofemoral Articular Cartilage

  • Chapter
  • First Online:
Patellofemoral Pain, Instability, and Arthritis

Abstract

Anterior knee pain is the leading cause of knee pain in patients younger than 45 years and can be caused by cartilage lesions in the patellofemoral compartment, which is frequently involved in cartilage disease of the knee [1]. Although the true incidence of cartilage lesions is unknown, numerous studies report chondral injuries in 60–66% of knees undergoing arthroscopy [2–4]. Cartilage injuries of the knee affect just under a million Americans annually and result in more than 200,000 surgical procedures [2]. Lesions are most commonly found on the weight-bearing femoral condyle (43–58%) with the majority of them located on the medial femoral condyle. While patellar lesions account for 11–36% of all cartilage lesions, trochlear lesions are less frequently encountered, accounting for approximately 6–16% of all lesions [3–5]. In 90% of cases, the defect size is reported to be less than 4 cm2 in the knee. Athletic activities are frequently associated with the diagnosis of chondral lesions [3, 6]. Patellofemoral osteoarthritis accounts for approximately 65% of patients with symptomatic knee osteoarthritis (OA) [7]. Even small changes in the patellofemoral articular cartilage surfaces have a profound activity-limiting effect on normal function. A recent meta-analysis revealed that in up to 52% of patients with knee pain or symptomatic osteoarthritis, MRI revealed cartilage lesions in the patellofemoral joint [8]. Despite its high prevalence, patellofemoral cartilage lesions remain underdiagnosed clinically and on multimodality imaging studies [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop Relat Res. 1979;144:9–15.

    Google Scholar 

  2. Farr J, Cole B, Dhawan A, Kercher J, Sherman S. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res. 2011;469(10):2696–705.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18(7):730–4.

    Article  PubMed  Google Scholar 

  4. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.

    Article  PubMed  CAS  Google Scholar 

  5. Widuchowski W, Lukasik P, Kwiatkowski G, et al. Isolated full thickness chondral injuries. Prevalance and outcome of treatment. A retrospective study of 5233 knee arthroscopies. Acta Chir Orthop Traumatol Cechoslov. 2008;75(5):382–6.

    CAS  Google Scholar 

  6. Aroen A, Loken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32(1):211–5.

    Article  PubMed  Google Scholar 

  7. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy. 2007;23(3):312–5.

    Article  PubMed  Google Scholar 

  8. Hart HF, Stefanik JJ, Wyndow N, Machotka Z, Crossley KM. The prevalence of radiographic and MRI-defined patellofemoral osteoarthritis and structural pathology: a systematic review and meta-analysis. Br J Sports Med. 2017;51(16):1195–208.

    Article  PubMed  Google Scholar 

  9. Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res. 2005;436:100–10.

    Article  Google Scholar 

  10. Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24(1):1–12.

    Article  PubMed  Google Scholar 

  11. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982;64(3):460–6.

    Article  PubMed  CAS  Google Scholar 

  12. Recht MP, Resnick D. MR imaging of articular cartilage: current status and future directions. AJR Am J Roentgenol. 1994;163(2):283–90.

    Article  PubMed  CAS  Google Scholar 

  13. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    PubMed  CAS  Google Scholar 

  14. Marijnissen AC, Lafeber FP. Re: E. B. Hunziker. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and cartilage 2002; 10:432-63. Osteoarthr Cartil. 2003;11(4):300–1. author reply 302-304

    Article  PubMed  CAS  Google Scholar 

  15. Li KC, Henkelman RM, Poon PY, Rubenstein J. MR imaging of the normal knee. J Comput Assist Tomogr. 1984;8(6):1147–54.

    Article  PubMed  CAS  Google Scholar 

  16. Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I Chemical composition. Ann Rheum Dis. 1977;36(2):121–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;10(6):432–63.

    Article  PubMed  CAS  Google Scholar 

  18. Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med. 2017;36(3):413–25.

    Article  PubMed  Google Scholar 

  19. Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater. 2013;25:248–67.

    Article  PubMed  CAS  Google Scholar 

  20. Harris JD, Brophy RH, Jia G, et al. Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy. 2012;28(11):1728–37.

    Article  PubMed  Google Scholar 

  21. LaPrade RF, Cram TR, Mitchell JJ, et al. Axial-oblique versus standard axial 3-T magnetic resonance imaging for the detection of trochlear cartilage lesions: a prospective study. Orthop J Sports Med. 2018;6(10):2325967118801009.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Azer NM, Winalski CS, Minas T. MR imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin N Am. 2004;42(1):43–60.

    Article  PubMed  Google Scholar 

  23. Recht MP, Kramer J, Marcelis S, et al. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology. 1993;187(2):473–8.

    Article  PubMed  CAS  Google Scholar 

  24. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80(9):1276–84.

    Article  PubMed  CAS  Google Scholar 

  25. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith TO, Drew BT, Toms AP, Donell ST, Hing CB. Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2367–79.

    Article  PubMed  Google Scholar 

  27. Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol. 2002;179(5):1159–66.

    Article  PubMed  Google Scholar 

  28. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267(2):503–13.

    Article  PubMed  Google Scholar 

  29. Kijowski R, Blankenbaker DG, Woods MA, Shinki K, De Smet AA, Reeder SB. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Radiology. 2010;255(1):117–27.

    Article  PubMed  Google Scholar 

  30. Lavdas E, Topalzikis T, Mavroidis P, et al. Comparison of PD BLADE with fat saturation (FS), PD FS and T2 3D DESS with water excitation (WE) in detecting articular knee cartilage defects. Magn Reson Imaging. 2013;31(8):1255–62.

    Article  PubMed  Google Scholar 

  31. Disler DG, Peters TL, Muscoreil SJ, et al. Fat-suppressed spoiled GRASS imaging of knee hyaline cartilage: technique optimization and comparison with conventional MR imaging. AJR Am J Roentgenol. 1994;163(4):887–92.

    Article  PubMed  CAS  Google Scholar 

  32. Vallotton JA, Meuli RA, Leyvraz PF, Landry M. Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc. 1995;3(3):157–62.

    Article  PubMed  CAS  Google Scholar 

  33. Schaefer FK, Kurz B, Schaefer PJ, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol. 2007;48(10):1131–7.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang M, Min Z, Rana N, Liu H. Accuracy of magnetic resonance imaging in grading knee chondral defects. Arthroscopy. 2013;29(2):349–56.

    Article  PubMed  Google Scholar 

  35. Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  36. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.

    Article  PubMed  CAS  Google Scholar 

  37. Insko EK, Kaufman JH, Leigh JS, Reddy R. Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med. 1999;41(1):30–4.

    Article  PubMed  CAS  Google Scholar 

  38. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    Article  PubMed  Google Scholar 

  39. David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–82.

    Article  PubMed  Google Scholar 

  40. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.

    Article  PubMed  CAS  Google Scholar 

  41. Gold GE, Burstein D, Dardzinski B, Lang P, Boada F, Mosher T. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers. Osteoarthritis Cartilage. 2006;14(Suppl A):A76–86.

    Article  PubMed  Google Scholar 

  42. Quirbach S, Trattnig S, Marlovits S, et al. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle. Skelet Radiol. 2009;38(8):751–60.

    Article  Google Scholar 

  43. Apprich S, Trattnig S, Welsch GH, et al. Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 tesla. Osteoarthr Cartil. 2012;20(7):703–11.

    Article  PubMed  CAS  Google Scholar 

  44. Faber SC, Eckstein F, Lukasz S, et al. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging. Skelet Radiol. 2001;30(3):144–50.

    Article  CAS  Google Scholar 

  45. Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.

    Article  PubMed  CAS  Google Scholar 

  46. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.

    Article  PubMed  CAS  Google Scholar 

  47. Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231(1):31–8.

    Article  PubMed  Google Scholar 

  48. Kendell SD, Helms CA, Rampton JW, Garrett WE, Higgins LD. MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol. 2005;184(5):1486–9.

    Article  PubMed  Google Scholar 

  49. Outerbridge RE. Further studies on the etiology of Chondromalacia patellae. J Bone Joint Surg Br. 1964;46:179–90.

    Article  PubMed  CAS  Google Scholar 

  50. Eriksen EF. Treatment of bone marrow lesions (bone marrow edema). Bonekey Rep. 2015;4:755.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brittberg M, Gomoll AH, Canseco JA, Far J, Lind M, Hui J. Cartilage repair in the degenerative ageing knee. Acta Orthop. 2016;87(sup363):26–38.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol. 2008;49(7):771–86.

    Article  PubMed  CAS  Google Scholar 

  53. Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40(2):325–31.

    Article  PubMed  Google Scholar 

  55. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902–8.

    Article  PubMed  Google Scholar 

  56. Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil. 2006;14(11):1119–25.

    Article  PubMed  CAS  Google Scholar 

  57. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19(5):477–84.

    Article  PubMed  Google Scholar 

  58. Demange MK, Minas T, von Keudell A, Sodha S, Bryant T, Gomoll AH. Intralesional osteophyte regrowth following autologous chondrocyte implantation after previous treatment with marrow stimulation technique. Cartilage. 2017;8(2):131–8.

    Article  PubMed  Google Scholar 

  59. Hayter C, Potter H. Magnetic resonance imaging of cartilage repair techniques. J Knee Surg. 2011;24(4):225–40.

    Article  PubMed  Google Scholar 

  60. Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br. 2003;85(7):1060–6.

    Article  PubMed  CAS  Google Scholar 

  61. Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 tesla. Investig Radiol. 2009;44(9):603–12.

    Article  Google Scholar 

  62. Chang EY, Pallante-Kichura AL, Bae WC, et al. Development of a comprehensive Osteochondral allograft MRI scoring system (OCAMRISS) with histopathologic, micro-computed tomography, and biomechanical validation. Cartilage. 2014;5(1):16–27.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marlovits S, Striessnig G, Resinger CT, et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol. 2004;52(3):310–9.

    Article  PubMed  Google Scholar 

  64. Meric G, Gracitelli GC, McCauley JC, et al. Osteochondral allograft MRI scoring system (OCAMRISS) in the knee: interobserver agreement and clinical application. Cartilage. 2015;6(3):142–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23.

    Article  PubMed  Google Scholar 

  66. Ebert JR, Fallon M, Robertson WB, et al. Radiological assessment of accelerated versus traditional approaches to postoperative rehabilitation following matrix-induced autologous chondrocyte implantation. Cartilage. 2011;2(1):60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Saris DB, Vanlauwe J, Victor J, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37(Suppl 1):10S–9S.

    Article  PubMed  Google Scholar 

  68. Niemeyer P, Laute V, John T, et al. The effect of cell dose on the early magnetic resonance morphological outcomes of autologous cell implantation for articular cartilage defects in the knee: a randomized clinical trial. Am J Sports Med. 2016;44(8):2005–14.

    Article  PubMed  Google Scholar 

  69. de Windt TS, Welsch GH, Brittberg M, et al. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am J Sports Med. 2013;41(7):1695–702.

    Article  PubMed  Google Scholar 

  70. Lansdown DA, Wang K, Cotter E, Davey A, Cole BJ. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med. 2018;6(4):2325967118765448.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lattermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merkely, G., Hinckel, B.B., Shah, N., Small, K.M., Lattermann, C. (2020). Magnetic Resonance Imaging of the Patellofemoral Articular Cartilage. In: Dejour, D., Zaffagnini, S., Arendt, E., Sillanpää, P., Dirisamer, F. (eds) Patellofemoral Pain, Instability, and Arthritis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61097-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61097-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61096-1

  • Online ISBN: 978-3-662-61097-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics