Skip to main content

Imaging Analysis of Patella Instability Factors

  • Chapter
  • First Online:
Patellofemoral Pain, Instability, and Arthritis

Abstract

Imaging has been considered of primary importance in the analysis of patellofemoral (PF) joint instability factors since the earlier experiences in this subject [1–4]. In the past few years, magnetic resonance imaging (MRI) has progressively become one of the most important exams for analysis of pathologic anatomy of an unstable PF joint and for eventual surgical planning. Following the Lyon’s School, it is possible to identify three major anatomic factors of instability: trochlear dysplasia, excessive patellar height, and pathological tibial tubercle-trochlear groove (TT-TG) distance [1]. MRI is applicable for assessment of each of these factors with increasing evidence on reliability and reproducibility. The MRI study of the patellofemoral joint should present specific characteristics such as the inclusion of the proximal part of the trochlea and the anterior tibial tuberosity, in order to allow the measurement of the specific indexes required for the assessment of patellar instability. These characteristics should be put on the specialist prescription in order to avoid missing reference points. The aim of this chapter is to give the reader an overview on this continuously evolving field of research and provide a guide for everyday clinical practice in treatment of PF joint instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  2. Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res. 1972;88:67–9.

    Article  PubMed  CAS  Google Scholar 

  3. Malghem J, Maldague B. Depth insufficiency of the proximal trochlear groove on lateral radiographs of the knee: relation to patellar dislocation. Radiology. 1989;170(2):507–10.

    Article  PubMed  CAS  Google Scholar 

  4. Goutallier D, Bernageau J, Lecudonnec B. The measurement of the tibial tuberosity. Patella groove distanced technique and results (author’s transl). Rev Chir Orthop Reparatrice Appar Mot. 1978;64(5):423–8.

    PubMed  CAS  Google Scholar 

  5. Dejour D, Saggin P. The sulcus deepening trochleoplasty-the Lyon’s procedure. Int Orthop. 2010;34(2):311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shen J, Qin L, Yao WW, Li M. The significance of magnetic resonance imaging in severe femoral trochlear dysplasia assessment. Exp Ther Med. 2017;14(6):5438–44.

    PubMed  PubMed Central  Google Scholar 

  7. Staubli HU, Durrenmatt U, Porcellini B, Rauschning W. Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br. 1999;81(3):452–8.

    Article  PubMed  CAS  Google Scholar 

  8. Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med. 2015;43(4):921–7.

    Article  PubMed  Google Scholar 

  9. Tscholl PM, Wanivenhaus F, Fucentese SF. Conventional radiographs and magnetic resonance imaging for the analysis of trochlear dysplasia: the influence of selected levels on magnetic resonance imaging. Am J Sports Med. 2017;45(5):1059–65.

    Article  PubMed  Google Scholar 

  10. Lippacher S, Dejour D, Elsharkawi M, Dornacher D, Ring C, Dreyhaupt J, et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med. 2012;40(4):837–43.

    Article  PubMed  Google Scholar 

  11. Skelley N, Friedman M, McGinnis M, Smith C, Hillen T, Matava M. Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle-trochlear groove distance and trochlea dysplasia. Am J Sports Med. 2015;43(4):873–8.

    Article  PubMed  Google Scholar 

  12. Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):120–7.

    Article  PubMed  CAS  Google Scholar 

  13. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216(2):582–5.

    Article  PubMed  CAS  Google Scholar 

  14. Paiva M, Blond L, Holmich P, Steensen RN, Diederichs G, Feller JA, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):746–55.

    Article  PubMed  Google Scholar 

  15. Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216(3):858–64.

    Article  PubMed  CAS  Google Scholar 

  16. Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: association of abnormal trochlear morphology with severe cartilage defects. AJR Am J Roentgenol. 2010;194(3):721–7.

    Article  PubMed  Google Scholar 

  17. Beaufils P, Thaunat M, Pujol N, Scheffler S, Rossi R, Carmont M. Trochleoplasty in major trochlear dysplasia: current concepts. Sports Med Arthros Rehabil Ther Technol. 2012;4:7.

    Article  Google Scholar 

  18. Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. Am J Roentgenol. 1996;167(2):339–41.

    Article  CAS  Google Scholar 

  19. Shabshin N, Schweitzer ME, Morrison WB, Parker L. MRI criteria for patella alta and baja. Skelet Radiol. 2004;33(8):445–50.

    Article  Google Scholar 

  20. Yue RA, Arendt EA, Tompkins MA. Patellar height measurements on radiograph and magnetic resonance imaging in patellar instability and control patients. J Knee Surg. 2017;30(9):943–50.

    Article  PubMed  Google Scholar 

  21. Lee PP, Chalian M, Carrino JA, Eng J, Chhabra A. Multimodality correlations of patellar height measurement on X-ray, CT, and MRI. Skelet Radiol. 2012;41(10):1309–14.

    Article  Google Scholar 

  22. Laugharne E, Bali N, Purushothamdas S, Almallah F, Kundra R. Variability of measurement of patellofemoral indices with knee flexion and quadriceps contraction: an MRI-based anatomical study. Knee Surg Relat Res. 2016;28(4):297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):707–12.

    Article  PubMed  Google Scholar 

  24. Fucentese SF, von Roll A, Koch PP, Epari DR, Fuchs B, Schottle PB. The patella morphology in trochlear dysplasia—a comparative MRI study. Knee. 2006;13(2):145–50.

    Article  PubMed  Google Scholar 

  25. Servien E, Ait Si Selmi T, Neyret P. Study of the patellar apex in objective patellar dislocation. Rev Chir Orthop Reparatrice Appar Mot. 2003;89(7):605–12.

    PubMed  CAS  Google Scholar 

  26. Ali SA, Helmer R, Terk MR. Patella alta: lack of correlation between patellotrochlear cartilage congruence and commonly used patellar height ratios. AJR Am J Roentgenol. 2009;193(5):1361–6.

    Article  PubMed  Google Scholar 

  27. Dejour D, Ferrua P, Ntagiopoulos PG, Radier C, Hulet C, Remy F, et al. The introduction of a new MRI index to evaluate sagittal patellofemoral engagement. Orthop Traumatol Surg Res. 2013;99(8 Suppl):S391–8.

    Article  PubMed  CAS  Google Scholar 

  28. Munch JL, Sullivan JP, Nguyen JT, Mintz D, Green DW, Shubin Stein BE, et al. Patellar articular overlap on MRI is a simple alternative to conventional measurements of patellar height. Orthop J Sports Med. 2016;4(7):2325967116656328.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guilbert S, Chassaing V, Radier C, Hulet C, Remy F, Chouteau J, et al. Axial MRI index of patellar engagement: a new method to assess patellar instability. Orthop Traumatol Surg Res. 2013;99(8 Suppl):S399–405.

    Article  PubMed  CAS  Google Scholar 

  30. Neyret P, Robinson AHN, Le Coultre B, Lapra C, Chambat P. Patellar tendon length - the factor in patellar instability? Knee. 2002;9(1):3–6.

    Article  PubMed  Google Scholar 

  31. Kujala UM, Osterman K, Kormano M, Nelimarkka O, Hurme M, Taimela S. Patellofemoral relationships in recurrent patellar dislocation. J Bone Joint Surg Br. 1989;71(5):788–92.

    Article  PubMed  CAS  Google Scholar 

  32. Mayer C, Magnussen RA, Servien E, Demey G, Jacobi M, Neyret P, et al. Patellar tendon tenodesis in association with tibial tubercle distalization for the treatment of episodic patellar dislocation with patella alta. Am J Sports Med. 2012;40(2):346–51.

    Article  PubMed  Google Scholar 

  33. Goldstein JL, Verma N, McNickle AG, Zelazny A, Ghodadra N, Bach BR Jr. Avoiding mismatch in allograft anterior cruciate ligament reconstruction: correlation between patient height and patellar tendon length. Arthroscopy. 2010;26(5):643–50.

    Article  PubMed  Google Scholar 

  34. Navali AM, Jafarabadi MA. Is there any correlation between patient height and patellar tendon length? Archiv Bone Joint Surg. 2015;3(2):99–103.

    Google Scholar 

  35. Ho CP, James EW, Surowiec RK, Gatlin CC, Ellman MB, Cram TR, et al. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle–trochlear groove distance. Am J Sports Med. 2015;43(3):675–82.

    Article  PubMed  Google Scholar 

  36. Camp CL, Stuart MJ, Krych AJ, Levy BA, Bond JR, Collins MS, et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med. 2013;41(8):1835–40.

    Article  PubMed  Google Scholar 

  37. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13(1):26–31.

    Article  PubMed  Google Scholar 

  38. Dornacher D, Reichel H, Kappe T. Does tibial tuberosity-trochlear groove distance (TT-TG) correlate with knee size or body height? Knee Surg Sports Traumatol Arthrosc. 2016;24(9):2861–7.

    Article  PubMed  Google Scholar 

  39. Anley CM, Morris GV, Saithna A, James SL, Snow M. Defining the role of the tibial tubercle-trochlear groove and tibial tubercle-posterior cruciate ligament distances in the work-up of patients with patellofemoral disorders. Am J Sports Med. 2015;43(6):1348–53.

    Article  PubMed  Google Scholar 

  40. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S. Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med. 2012;40(5):1119–25.

    Article  PubMed  Google Scholar 

  41. Brady JM, Sullivan JP, Nguyen J, Mintz D, Green DW, Strickland S, et al. The Tibial tubercle-to-trochlear groove distance is reliable in the setting of trochlear dysplasia, and superior to the tibial tubercle-to-posterior cruciate ligament distance when evaluating coronal malalignment in patellofemoral instability. Arthroscopy. 2017;33(11):2026–34.

    PubMed  Google Scholar 

  42. Daynes J, Hinckel BB, Farr J. Tibial tuberosity-posterior cruciate ligament distance. J Knee Surg. 2016;29(6):471–7.

    Article  PubMed  Google Scholar 

  43. Boutris N, Delgado DA, Labis JS, McCulloch PC, Lintner DM, Harris JD. Current evidence advocates use of a new pathologic tibial tubercle-posterior cruciate ligament distance threshold in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2733–42.

    Article  PubMed  Google Scholar 

  44. Clifton B, Richter DL, Tandberg D, Ferguson M, Treme G. Evaluation of the tibial tubercle to posterior cruciate ligament distance in a pediatric patient population. J Pediatr Orthop. 2017;37(6):e388–e93.

    Article  PubMed  Google Scholar 

  45. Heidenreich MJ, Camp CL, Dahm DL, Stuart MJ, Levy BA, Krych AJ. The contribution of the tibial tubercle to patellar instability: analysis of tibial tubercle-trochlear groove (TT-TG) and tibial tubercle-posterior cruciate ligament (TT-PCL) distances. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2347–51.

    Article  PubMed  Google Scholar 

  46. Staheli LT, Corbett M, Wyss C, King H. Lower-extremity rotational problems in children. Normal values to guide management. J Bone Joint Surg Am. 1985;67(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  47. Tomczak RJ, Guenther KP, Rieber A, Mergo P, Ros PR, Brambs HJ. MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol. 1997;168(3):791–4.

    Article  PubMed  CAS  Google Scholar 

  48. Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg Am. 1987;69(8):1169–76.

    Article  PubMed  CAS  Google Scholar 

  49. Galbraith RT, Gelberman RH, Hajek PC, Baker LA, Sartoris DJ, Rab GT, et al. Obesity and decreased femoral anteversion in adolescence. J Orthop Res. 1987;5(4):523–8.

    Article  PubMed  CAS  Google Scholar 

  50. Bauman PA, Singson R, Hamilton WG. Femoral neck anteversion in ballerinas. Clin Orthop Relat Res. 1994;302:57–63.

    Google Scholar 

  51. Guenther KP, Tomczak R, Kessler S, Pfeiffer T, Puhl W. Measurement of femoral anteversion by magnetic resonance imaging—evaluation of a new technique in children and adolescents. Eur J Radiol. 1995;21(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  52. Schneider B, Laubenberger J, Jemlich S, Groene K, Weber HM, Langer M. Measurement of femoral antetorsion and tibial torsion by magnetic resonance imaging. Br J Radiol. 1997;70(834):575–9.

    Article  PubMed  CAS  Google Scholar 

  53. Botser IB, Ozoude GC, Martin DE, Siddiqi AJ, Kuppuswami S, Domb BG. Femoral anteversion in the hip: comparison of measurement by computed tomography, magnetic resonance imaging, and physical examination. Arthroscopy. 2012;28(5):619–27.

    Article  PubMed  Google Scholar 

  54. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW. Assessment of femoral antetorsion with MRI: comparison of oblique measurements to standard transverse measurements. AJR Am J Roentgenol. 2015;205(1):130–5.

    Article  PubMed  Google Scholar 

  55. Diederichs G, Kohlitz T, Kornaropoulos E, Heller MO, Vollnberg B, Scheffler S. Magnetic resonance imaging analysis of rotational alignment in patients with patellar dislocations. Am J Sports Med. 2013;41(1):51–7.

    Article  PubMed  Google Scholar 

  56. Balcarek P, Radebold T, Schulz X, Vogel D. Geometry of torsional malalignment syndrome: trochlear dysplasia but not torsion predicts lateral patellar instability. Orthop J Sports Med. 2019;7(3):2325967119829790.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stuberg W, Temme J, Kaplan P, Clarke A, Fuchs R. Measurement of tibial torsion and thigh-foot angle using goniometry and computed tomography. Clin Orthop Relat Res. 1991;272:208–12.

    Google Scholar 

  58. Tamari K, Tinley P, Briffa K, Breidahl W. Validity and reliability of existing and modified clinical methods of measuring femoral and tibiofibular torsion in healthy subjects: use of different reference axes may improve reliability. Clin Anat. 2005;18(1):46–55.

    Article  PubMed  Google Scholar 

  59. Jend HH. Computed tomographic determination of the anteversion angle. Premises and possibilities. Rofo. 1986;144(4):447–52.

    Article  PubMed  CAS  Google Scholar 

  60. Muhamad AR, Freitas JM, Bomar JD, Dwek J, Hosalkar HS. CT and MRI lower extremity torsional profile studies: measurement reproducibility. J Child Orthop. 2012;6(5):391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rosskopf AB, Buck FM, Pfirrmann CW, Ramseier LE. Femoral and tibial torsion measurements in children and adolescents: comparison of MRI and 3D models based on low-dose biplanar radiographs. Skelet Radiol. 2017;46(4):469–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Berruto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berruto, M., Ferrua, P., Tradati, D., Maione, A., Usellini, E. (2020). Imaging Analysis of Patella Instability Factors. In: Dejour, D., Zaffagnini, S., Arendt, E., Sillanpää, P., Dirisamer, F. (eds) Patellofemoral Pain, Instability, and Arthritis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61097-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61097-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61096-1

  • Online ISBN: 978-3-662-61097-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics