Skip to main content

Basic Science on Shoulder Instability

  • Chapter
  • First Online:
360° Around Shoulder Instability

Abstract

Shoulder instability is a complex issue involving a multitude of static and dynamic components. This chapter gives an overview of the basic science studies on shoulder instability. The important parameters in biomechanical testing models are peak contact pressures over the glenohumeral joint and the required force to dislocate the shoulder. It is discussed how joint biomechanics are altered by labral detachment and bone loss. These changes in joint biomechanics are a possible cause of both recurrent instability and the development of degenerative changes of the shoulder. Next, it is addressed if the altered joint biomechanics can be restored to normal with a Bankart procedure and when a bone graft procedure is justified. Therefore, it is important to understand the concept of bipolar bone loss and how this influences the “critical size defect.”

These are the most important conclusions that can be drawn:

  • A Bankart lesion results in a decreased contact area, increased contact pressures accross the joint, and a decreased force required to dislocate the shoulder. These can be restored with Bankart repair if there is no glenoid bone loss.

  • Anterior glenoid bone loss progressively increases the mean contact pressures in the glenohumeral joint, with an antero-inferior shift of peak contact pressures toward the antero-inferior quadrant. A 30% glenoid defect results in a fourfold (or 390%) increase in contact pressure in the antero-inferior quadrant.

  • The “critical size” of bony glenoid defects which justifies a bone graft procedure is difficult to define, but can be as small as 15% of the glenoid diameter, or even less (10%, or 2–4 mm) in the case of humeral head defects, i.e., bipolar bone loss.

  • Joint biomechanics can be restored to normal with a Latarjet procedure, provided that the bone graft is placed flush with the glenoid articular surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montgomery SR, Katthagen JC, Mikula JD, Marchetti DC, Tahal DS, Dornan GJ, et al. Anatomic and biomechanical comparison of the classic and congruent-arc techniques of the Latarjet procedure. Am J Sports Med. 2017;45(6):1252–60.

    Article  PubMed  Google Scholar 

  2. Shin SJ, Ko YW, Scott J, McGarry MH, Lee TQ. The effect of defect orientation and size on glenohumeral instability: a biomechanical analysis. Knee Surg Sports Traumatol Arthrosc. 2016;24(2):533–9.

    Article  PubMed  Google Scholar 

  3. Arciero R, Parrino A, Bernhardson AS, Diaz-Doran V, Obopilwe E, Cote MP, et al. The effect of a combined glenoid and Hill-Sachs defect on glenohumeral stability: a biomechanical cadaveric study using 3-dimensional modeling of 142 patients. Am J Sports Med. 2015;43(6):1422–9.

    Article  PubMed  Google Scholar 

  4. Soslowsky LJ, Flatow EL, Bigliani LU, Mow VC. Articular geometry of the glenohumeral joint. Clin Orthop Relat Res. 1992;285:181–90. https://doi.org/10.1097/00003086-199212000-00023.

  5. Lazarus MD, Sidles JA, Harryman DT, Matsen FA. Effect of a chondral-labral defect on glenoid concavity and glenohumeral stability. A cadaveric model. J Bone Joint Surg Am [Internet]. 1996;78(1):94–102.

    Article  CAS  Google Scholar 

  6. Lippitt SB, Vanderhooft JE, Harris SL, Sidles JA, Harryman DT, Matsen FA. Glenohumeral stability from concavity-compression: a quantitative analysis. J Shoulder Elb Surg. 1993;2(1):27–35.

    Article  CAS  Google Scholar 

  7. O’Brien SJ. Capsular restraints to anterior-posterior motion of the abducted shoulder. J Shoulder Elb Surg. 1995;4:298–308.

    Article  Google Scholar 

  8. Smith CD, Masouros SD, Hill AM, Wallace AL, Amis AA, Bull AMJ. Tensile properties of the human glenoid labrum. J Anat. 2008;212(1):49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. McMahon PJ, Chow S, Sciaroni L, Yang BY, Lee TQ. A novel cadaveric model for anterior-inferior shoulder dislocation using forcible apprehension positioning. J Rehabil Res Dev. 2003;40(4):349–59.

    Article  PubMed  Google Scholar 

  10. de Beer JF, Roberts C. Glenoid bone defects-open Latarjet with congruent arc modification. Orthop Clin North Am. 2010;41(3):407–15.

    Article  PubMed  Google Scholar 

  11. Westerhoff P, Graichen F, Bender A, Halder A, Beier A, Rohlmann A, et al. In vivo measurement of shoulder joint loads during activities of daily living. J Biomech. 2009;42(12):1840–9.

    Article  CAS  PubMed  Google Scholar 

  12. Greis PE, Scuderi MG, Mohr A, Bachus KN, Burks RT. Glenohumeral articular contact areas and pressures following labral and osseous injury to the anteroinferior quadrant of the glenoid. J Shoulder Elb Surg. 2002;11(5):442–51.

    Article  Google Scholar 

  13. Ghodadra N, Gupta A, Romeo AA, Bach BR, Verma N, Shewman E, et al. Normalization of glenohumeral articular contact pressures after Latarjet or iliac crest bone-grafting. J Bone Joint Surg Am. 2010;92(6):1478–89.

    Article  PubMed  Google Scholar 

  14. Yamamoto N, Muraki T, An K, Sperling J. The stabilizing mechanism of the Latarjet procedure: part II. J Bone Joint Surg Am. 2013;95-A(15):1390–7.

    Article  Google Scholar 

  15. Bankart AS, Cantab MC. Recurrent or habitual dislocation of the shoulder-joint. Clin Orthop Relat Res. 1993;(291):3–6.

    Google Scholar 

  16. Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. Arthroscopy. 2000;16(7):677–94.

    Article  CAS  PubMed  Google Scholar 

  17. Porcellini G, Campi F, Pegreffi F, Castagna A, Paladini P. Predisposing factors for recurrent shoulder dislocation after arthroscopic treatment. J Bone Joint Surg Am. 2009;91(11):2537–42.

    Article  PubMed  Google Scholar 

  18. Griffith JF, Antonio GE, Yung PSH, Wong EMC, Yu AB, Ahuja AT, et al. Prevalence, pattern, and spectrum of glenoid bone loss in anterior shoulder dislocation: CT analysis of 218 patients. AJR Am J Roentgenol. 2008;190(5):1247–54.

    Article  PubMed  Google Scholar 

  19. Piasecki DP, Verma NN, Romeo AA, Levine WN, Bach BR, Provencher MT. Glenoid bone deficiency in recurrent anterior shoulder instability: diagnosis and management. J Am Acad Orthop Surg. 2009;17(8):482–93.

    Article  PubMed  Google Scholar 

  20. Widjaja AB, Tran A, Bailey M, Proper S. Correlation between Bankart and Hill-Sachs lesions in anterior shoulder dislocation. ANZ J Surg. 2006;76(6):436–8.

    Article  PubMed  Google Scholar 

  21. Conzen A, Eckstein F. Quantitative determination of articular pressure in the human shoulder joint. J Shoulder Elb Surg. 2000;9(3):196–204.

    Article  CAS  Google Scholar 

  22. Yamamoto N, Muraki T, Sperling JW, Steinmann SP, Cofield RH, Itoi E, et al. Stabilizing mechanism in bone-grafting of a large glenoid defect. J Bone Joint Surg Am. 2010;92(11):2059–66.

    Article  PubMed  Google Scholar 

  23. Yamamoto A, Massimini DF, Distefano J, Higgins LD. Glenohumeral contact pressure with simulated anterior labral and osseous defects in cadaveric shoulders before and after soft tissue repair. Am J Sports Med. 2014;42(8):1947–54.

    Article  PubMed  Google Scholar 

  24. Pauzenberger L, Dyrna F, Obopilwe E, Heuberer PR, Arciero RA, Anderl W, et al. Biomechanical evaluation of glenoid reconstruction with an implant-free J-bone graft for anterior glenoid bone loss. Am J Sports Med. 2017;45(12):2849–57.

    Article  PubMed  Google Scholar 

  25. Balg F, Boileau P. The instability severity index score. A simple pre-operative score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br [Internet]. 2007;89(11):1470–7.

    Article  CAS  Google Scholar 

  26. Matsen FA III and Thomas SC: Glenohumeral Instability. In Surgery of the Musculoskeletal System. Evart CMC (ed.). Churchill Livingstone New York 1990;3:1439–69.

    Google Scholar 

  27. Itoi E. The effect of a glenoid defect on anteroinferior stability of the shoulder. J Bone Joint Surg Am. 2000;82-A(1):35–46.

    Article  Google Scholar 

  28. Bigliani LU, Newton PM, Steinmann SP, Connor PM, Mcllveen SJ. Glenoid rim lesions associated with recurrent anterior dislocation of the shoulder. Am J Sports Med [Internet]. 1998;26(1):41–5.

    Article  CAS  Google Scholar 

  29. Shin SJ, Koh YW, Bui C, Jeong WK, Akeda M, Cho NS, et al. What is the critical value of glenoid bone loss at which soft tissue Bankart repair does not restore glenohumeral translation, restricts range of motion, and leads to abnormal humeral head position? Am J Sports Med. 2016;44(11):2784–91.

    Article  PubMed  Google Scholar 

  30. Sugaya H, Moriishi J, Dohi M, Kon Y, Tsuchiya A. Glenoid rim morphology in recurrent anterior glenohumeral instability. J Bone Joint Surg Am. 2003;85(5):878–84.

    Article  PubMed  Google Scholar 

  31. Huysmans PE, Haen PS, Kidd M, Dhert WJ, Willems JW. The shape of the inferior part of the glenoid: a cadaveric study. J Shoulder Elb Surg. 2006;15(6):759–63.

    Article  Google Scholar 

  32. Sugaya H. Techniques to evaluate glenoid bone loss. Curr Rev Musculoskelet Med. 2014;7(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto N, Itoi E, Abe H, Kikuchi K, Seki N, Minagawa H, et al. Effect of an anterior glenoid defect on anterior shoulder stability: a cadaveric study. Am J Sports Med. 2009;37(5):949–54.

    Article  PubMed  Google Scholar 

  34. Saito H, Itoi E, Sugaya H, Minagawa H, Yamamoto N, Tuoheti Y. Location of the glenoid defect in shoulders with recurrent anterior dislocation. Am J Sports Med. 2005;33(6):889–93.

    Article  PubMed  Google Scholar 

  35. Kaar SG, Fening SD, Jones MH, Colbrunn RW. Stability: a cadaveric study of simulated Hill-Sachs. J Bone Joint Surg Am Vol. 2011;38(3):594–9.

    Google Scholar 

  36. Gottschalk LJ, Walia P, Patel RM, Kuklis M, Jones MH, Fening SD, et al. Stability of the glenohumeral joint with combined humeral head and glenoid defects. Am J Sports Med. 2015;44(4):933–40.

    Article  Google Scholar 

  37. Grimberg J, Diop A, Ghosn RB, Lanari D, Canonne A, Maurel N. Bankart repair versus Bankart repair plus remplissage: an in vitro biomechanical comparative study. Knee Surg Sports Traumatol Arthrosc. 2016;24(2):374–80.

    Article  PubMed  Google Scholar 

  38. Weber BG, Simpson LA, Hardegger F. Rotational humeral osteotomy for recurrent anterior dislocation of the shoulder associated with a large Hill-Sachs lesion. J Bone Joint Surg Am. 1984;66(9):1443–50.

    Article  CAS  PubMed  Google Scholar 

  39. Brooks-Hill AL, Forster BB, van Wyngaarden C, Hawkins R, Regan WD. Weber osteotomy for large Hill-Sachs defects: clinical and CT assessments. Clin Orthop Relat Res. 2013;471(8):2548–55.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Latarjet M. Treatment of recurrent dislocation of the shoulder. Lyon Chir. 1954;49(8):994–7.

    CAS  PubMed  Google Scholar 

  41. DeHaan A, Munch J, Durkan M, Yoo J, Crawford D. Reconstruction of a bony Bankart lesion: best fit based on radius of curvature. Am J Sports Med. 2013;41(5):1140–5.

    Article  PubMed  Google Scholar 

  42. Payne WB, Kleiner MT, McGarry MH, Tibone JE, Lee TQ. Biomechanical comparison of the Latarjet procedure with and without capsular repair. Clin Orthop Surg. 2016;8(1):84–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boons HW, Giles JW, Elkinson I, Johnson JA, Athwal GS. Classic versus congruent coracoid positioning during the Latarjet procedure: an in vitro biomechanical comparison. Arthroscopy. 2013;29(2):309–16.

    Article  PubMed  Google Scholar 

  44. Patel RM, Walia P, Gottschalk L, Kuklis M, Jones MH, Fening SD, et al. The effects of Latarjet reconstruction on glenohumeral kinematics in the presence of combined bony defects. Am J Sports Med. 2016;44(7):1818–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiaan J. A. van Bergen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kraal, T., Regan, W.D., van Bergen, C.J.A. (2020). Basic Science on Shoulder Instability. In: Brzóska, R., Milano, G., Randelli, P., Kovačič, L. (eds) 360° Around Shoulder Instability. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61074-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61074-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61073-2

  • Online ISBN: 978-3-662-61074-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics