Skip to main content

Methoden der Trauma-Biomechanik

  • Chapter
  • First Online:
Trauma-Biomechanik

Zusammenfassung

Die Arbeit in der Trauma-Biomechanik wird durch einige Randbedingungen eingeschränkt, die in dieser Form in anderen Bereichen der Ingenieurwissenschaften und der Life Sciences nicht oder nur zu einem geringen Teil vorhanden sind. Experimente an Menschen, bei denen verletzungsinduzierende Belastungen auftreten können, sind ausgeschlossen. Tierversuche sind nur sehr eingeschränkt anwendbar, da es schwierig bis unmöglich ist, Verletzungssituationen vom Tier auf den Menschen zu übertragen. Auch ist es fraglich, in welchem Grade Tiermodelle die Biomechanik des Menschen repräsentieren. Kosten und insbesondere ethische Überlegungen tragen weiter dazu bei, dass solche Experimente heute nur noch selten und nur unter besonderen Bedingungen durchgeführt werden. Dementsprechend sind die in der Trauma-Biomechanik zur Anwendung kommenden Methoden größtenteils indirekt. Dazu gehören statistische Ansätze und Feldstudien, Unfallrekonstruktionen, verschiedene biomechanische Experimente, standardisierte Testverfahren sowie numerische Simulationen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. AIS (2015) The abbreviated injury scale dictionary 2015 revision. Association for the Advancement of Automotive Medicine, Chicago

    Google Scholar 

  2. ASME (2006) Guide for verification and validation in computational solid mechanics. ASME V & V 10-2006: an American national standard. The American Society of Mechanical Engineers, New York

    Google Scholar 

  3. Baker S, O’Neill B (1976) The injury severity score: an update. J Trauma 11:882–885

    Article  Google Scholar 

  4. Bathe K (2007) Finite element procedures. India: Prentice-Hall, ISBN 978-8120310759

    Google Scholar 

  5. Beason D, Dakin G, Lopez R, Alonso J, Bandak F, Eberhardt A (2003) Bone mineral density correlates with fracture load in experimental side impacts of the pelvis. J Biomech 36:219–227

    Article  Google Scholar 

  6. Belytschko T, Liu W, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures, 2. Aufl. Wiley, Chicester

    MATH  Google Scholar 

  7. Campbell F, Woodford M, Yates D (1994) A comparison of injury impairment scale scores and physician’s estimates of impairment following injury to the head, abdomen and lower limbs. In: Proceedings of the 38th AAAM conference

    Google Scholar 

  8. Carlsson A, Chang F, Lemmen P, Kullgren A, Schmitt K-U, Linder A, Svensson M (2012) EvaRID – a 50th percentile female rear impact finite element dummy model. In: Proceedings of the IRCOBI conference (paper no. IRC-12-32, S 249–62)

    Google Scholar 

  9. Carsten O, Day J (1988) Injury priority analysis. NHTSA Technical Report DOT HS 807:224

    Google Scholar 

  10. Chawla M, Hildebrand F, Pape H, Giannoudis P (2004) Predicting outcome after multiple trauma: which scoring system? Injury 35:347–358

    Article  Google Scholar 

  11. Cheng H, Obergefell L, Rizer A (1994) Generator of body (GEBOD) manual. Wright Patterson Air Force Base, USA

    Google Scholar 

  12. Damm R, Schnottale B, Lorenz B (2006) Evaluation of the biofidelity of the WorldSID and the ES-2 on the basis of PMHS data. In: Proceedings of the IRCOBI conference (S 225–37)

    Google Scholar 

  13. Deng Y, Kong W, Ho H (1999) Development of a finite element human thorax model for impact injury studies, SAE Technical Paper Series, 1999-01-0715

    Google Scholar 

  14. Forbes P, Cronin D, Deng Y (2006) Multi-scale human body model to predict side impact thoracic trauma. Int J Crashworthiness 11(3):203–216

    Article  Google Scholar 

  15. Fung Y (1993) Biomechanics: mechanical properties of living tissues, 2. Aufl. Springer, New York

    Book  Google Scholar 

  16. Gabler H, Weaver A, Stitzel J (2015) Automotive field data in injury biomechanics. In: Yoganandan N, Nahum AM, Melvin JW (Hrsg) Accidental injury – biomechanics and prevention. Springer, New York

    Google Scholar 

  17. Gayzik F, Moreno D, Geer C, Wuertzer S, Martin R, Stitzel J (2011) Development of a full body cad dataset for computational modeling: a multi-modality approach. Ann Biomed Eng 39:2568–2583

    Article  Google Scholar 

  18. Gierczycka D, Watson B, Cronin D (2015) Investigation of occupant arm position and door properties on thorax kinematics in side impact crash scenarios, comparison of ATD and human models. Int J Crashworthiness 20(3):242–269

    Article  Google Scholar 

  19. Gierczycka D, Cronin D (2017) Occupant thorax response variations due to arm position and restraint systems in side impact crash scenarios. Accid Anal Prev 106:173–180

    Article  Google Scholar 

  20. Gutsche A, Tomasch E, Sinz W, Levallois I, Alonso S, Lemmen P, Linder A, Steffan H (2013) Improve assessment and enhance safety for the evaluation of whiplash protection systems addressing male and female occupants in different seat configurations by introducing virtual methods in consumer tests. In: Proceedings of the IRCOBI conference (paper no. IRC-13-16, S 77–90)

    Google Scholar 

  21. Holzapfel G, Ogden R (2006) Mechanics of biological tissues. Springer, Berlin. ISBN 978-3-540-25194-1

    Book  Google Scholar 

  22. Horst, van der M (2002) Human head neck response in frontal, lateral and rear end impact loading – modelling and validation. PhD Thesis, Eindhoven University of Technology, ISBN 90-386-2843-9

    Google Scholar 

  23. Humanetics (2018). http://www.humaneticsatd.com/. Zugegriffen: 6. Oct. 2018

  24. Iwamoto M, Kisanuki Y, Watanabe I, Furusu K, Miki K, Hasegawa J (2002) Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction. In: Proceedings of the IRCOBI conference (S 31–42)

    Google Scholar 

  25. Khor F, Cronin D, Watson B, Gierczycka D, Malcolm S (2018) Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation. J Mech Behav Biomed Mat 87:213–229

    Article  Google Scholar 

  26. Kitagawa Y, Hayashi S, Yamada K, Gotoh M (2017) Occupant kinematics in simulated autonomous driving vehicle collisions: influence of seating position, direction and angle. Stapp Car Crash J 61:101–155

    Google Scholar 

  27. Linder A, Schick S, Hell W, Svensson M, Carlsson A, Lemmen P, Schmitt K-U, Gutsche A, Tomasch E (2013) ADSEAT – Adaptive seat to reduce neck injuries for female and male occupants. Accid Anal Prev 60:334–343

    Article  Google Scholar 

  28. Liu IS (2002) Continuum mechanics. Springer, Berlin. ISBN 978-3-540-43019-3

    Book  Google Scholar 

  29. LSTC (2007) LS-DYNA keyword user’s manual (Version 971). Livermore, California: LSTC. http://lstc.com/pdf/ls-dyna_971_manual_k.pdf

  30. Malliaris A (1985) Harm causation and ranking in car crashes. SAE 85090 94:496–518

    Google Scholar 

  31. Mertz HJ, Irwin AL, Prasad P (2003) Biomechanical and scaling bases for frontal and side impact injury assessment reference values. Stapp Car Crash J 47:155–188

    Google Scholar 

  32. Meyers M (1994) Dynamic behaviour of materials. Wiley, New York

    Book  Google Scholar 

  33. Muser M, Zellmer H, Walz F, Hell W, Langwieder K (1999) Test procedure for the evaluation of the injury risk to the cervical spine in a low speed rear end impact. Proposal for the ISO/ TC22 N 2071/ ISO/TC22/SC10 (collision test procedures)

    Google Scholar 

  34. NHTSA (2018) Biomechanics test database. https://www.nhtsa.gov/. Zugegriffen: 17. Oct. 2018

  35. Niederer P (2010) Mathematical foundations of biomechanics. Crit Rev Biomed Eng 38(6):355–577

    Article  Google Scholar 

  36. Ono K, Kaneoka K (1997) Motion analysis of human cervical vertebrae during low speed rear impacts by the simulated sled. In: Proceedings of the IRCOBI conference (S 223–237)

    Google Scholar 

  37. Roache P (1994) Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng 116(3):405

    Article  Google Scholar 

  38. Schmitt K-U, Muser M, Walz F, Niederer P (2002) On the role of fluid-structure interaction in the biomechanics of soft tissue neck injuries. Traf Inj Prev 3(1):65–73

    Article  Google Scholar 

  39. Schmitt K-U, Muser M, Vetter D, Walz F (2003) Whiplash injuries: cases with a long period of sick leave need biomechanical assessment. Euro Spine 12(3):247–254

    Article  Google Scholar 

  40. Schmitt K-U, Beyeler F, Muser M, Niederer P (2004) A visco-elastic foam as head restraint material – experiments and numerical simulations using a BioRID model. Traf Inj Prev 9(4):341–348

    Google Scholar 

  41. Singh D, Cronin D (2017) Efficacy of visor and helmet for blast protection assessed using a computational head model. Shock Waves 27(6):905–918

    Article  Google Scholar 

  42. Spitzer W, Skovron M, Salmi L, Cassiy J, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the quebec task force on whiplash associated disorders: redefining “whiplash” and its management. Spine 20(8S):3–73

    Google Scholar 

  43. Stitzel J, Cormier J, Barretta J, Kennedy E, Smith E, Rath A, Duma S, Matsuoka F (2003) Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction. Stapp Car Crash J 47:243–265

    Google Scholar 

  44. Sutton M (2008) Digital image correlation for shape and deformation measurements. In: Sharpe W (Hrsg) Springer Handbook of experimental solid mechanics. Springer, Boston

    Google Scholar 

  45. TASS (2017) International madymo dummy models. https://tass.plm.automation.siemens.com/madymo-dummy-models

  46. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  Google Scholar 

  47. Thunert C (2012) CORA release 3.6 user’s manual. http://www.pdb-org.com/en/information/18-cora-download.html. Zugegriffen: 17. Oct. 2018

  48. Vavalle N, Davis M, Stitzel J, Gayzik S (2015) Quantitative validation of a human body finite element model using rigid body impacts. Ann Biomed Eng 43(9):2163–2174

    Article  Google Scholar 

  49. Winkelstein B, Nightingale R, Richardson W, Myers B (2000) The cervical facet capsule and its role in whiplash injury: a biomechanical investigation. Spine 25(10):1238–1246

    Article  Google Scholar 

  50. Yamada H (1970) Strength of biological materials. The Williams & Wilkins Company, Baltimore

    Google Scholar 

  51. Yang K (2018) Basic finite element method as applied to injury biomechanics. Academic, USA 9780128098325

    Google Scholar 

  52. Zeidler F, Pletschen B, Mattern R, Alt B, Miksch T, Eichendorf W, Reiss S (1989) Development of a new injury cost scale. In: Proceedings of the 33rd Annual conference AAAM

    Google Scholar 

  53. Zienkiewicz O, Taylor R (1994) The finite element method. McGraw-Hill Book Company, London. ISBN 0-07-084175-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Schmitt .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitt, KU., Niederer, P.F., Cronin, D.S., Morrison III, B., Muser, M.H., Walz, F. (2020). Methoden der Trauma-Biomechanik. In: Trauma-Biomechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60936-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60936-1_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60935-4

  • Online ISBN: 978-3-662-60936-1

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics