Skip to main content

Smart Generation: Resources and Potentials

  • Chapter
  • First Online:
  • 1491 Accesses

Abstract

The need to modernize the electricity networks is based first and foremost on the integration of more sustainable generation resources, especially the partially volatile renewable sources. The volatile character which is due to significant shares of renewable sources (wind and sun) has a crucial influence on the operational behavior of the overall power system. Consequently, it is necessary to significantly enhance the flexibility and smartness of the electricity generation processes. Smart Generation concerns the complex coordination of volatile and definitely controllable power plants, storage capabilities and demand side management facilities. The advanced generation and storage technologies are described. Both the Smart Grid and Smart Generation concepts will ensure the reliable, sustainable and environmentally friendly electric power supply of the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://wdi.worldbank.org/table/3.7 (June 2018)

  2. https://www.vgb.org/daten_stromerzeugung.html?dfid=87615 (June 2018)

  3. http://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/geu_dateien/FB4-Internetseiten/CO2-Emissionen%20der%20Stromerzeugung_01.pdf (August 2013)

  4. B.M. Buchholz, et al.: Smart Distribution 2020 - Virtuelle Kraftwerke in Verteilungsnetzen. Studie der Energietechnischen Gesellschaft im VDE (ETG). Frankfurt, Juli 2008. http://www.vde.com

  5. Desertec Foundation. Clean power from deserts. The DESERTEC Concept for Energy, Water and Climate Security. White book 4th edition, Protext-Verlag, Bonn, February 2009. http://www.desertec.org/…/DESERTEC-WhiteBook_en (March 2013)

  6. http://www.desertec.org/fileadmin/downloads/media/pictures/DESERTEC_EU-MENA_map.jpg (August 2013)

  7. https://www.enercon.de/produkte/ep-8/e-126/ (August 2018)

  8. https://www.iwr.de/news.php?id=33852 (August 2018)

  9. http://www.energiepark-druiberg.de/index.php  (August 2013)

  10. Mohan, N.; Undeland, T. M.; Robbins, W. P.: Power Electronics – Converters, Applications and Design. John Wiley & Sons, Inc. 1995. ISBN 0-471-58408-8

    Google Scholar 

  11. http://pdf.directindustry.com/pdf/suzlon/s9x-suite-21-mw/102149-295831.html (August 2018)

  12. http://www.windpoweroffshore.com/article/1325303/senvion-62mw-prototype-installed (August 2018)

  13. S. Engelhardt, A. Geniusz. Measurements of doubly fed induction generator with optimized fault ride through. http://proceedings.ewea.org/ewec2009/allfiles2/434_EWEC2009presentation.pdf (August 2013)

  14. http://www.profes.at/download/VestasV112_3-MW.pdf (August 2018)

  15. https://www.volker-quaschning.de/datserv/windinst/index.php (September 2019)

  16. G. Brauner, et al.:  Erneuerbare Energie braucht flexible Kraftwerke – Szenarien bis 2020. Studie der Energietechnischen Gesellschaft im VDE (ETG), Frankfurt, April 2012. http://www.vde.com

  17. http://en.wikipedia.org/wiki/Solar_cell (August 2013)

  18. http://de.wikipedia.org/wiki/Sonnenwärmekraftwerk (August 2013)

  19. http://www.plantsciences.ucdavis.edu/plantsciences_Faculty/Bloom/CAMEL/energy.html (August 2013)

  20. http://www.thenational.ae/business/shams-1-solar-power-plant (August 2013)

  21. http://www.volker-quaschning.de/datserv/pv-welt/index.php (September 2019)

  22. https://de.wikipedia.org/wiki/Sonnenwärmekraftwerk (September 2019)

  23. Z. A. Styczynski, N. I. Voropaj. Renewable Energy Systems – Fundamentals, Technologies, Techniques and Economics. Res Electricae Magdeburgensis – Magdeburger Forum zur Elektrotechnik. 1st issue, Otto- von- Guericke University Magdeburg 2010. ISBN 978-3-940961-41-6

    Google Scholar 

  24. https://de.statista.com/statistik/daten/studie/37045/umfrage/energie-aus-biomasse-weltweit/ (June 2018)

  25. https://www.ecoprog.com/fileadmin/user_upload/pressemitteilungen/pm_biomass_to_power_2016-17_ecoprog.pdf (June 2018)

  26. W. Tester, et al.: The future of geothermal energy – Impact of Enhanced Geothermal Systems on the United States in the 21st Century: An Assessment, Idaho Falls: Idaho National Laboratory 2007, ISBN 0-615-13438-6

    Google Scholar 

  27. http://de.wikipedia.org/wiki/Geothermiekraftwerk_Landau (August 2013)

  28. http://www.bine.info/publikationen/basisenergie/publikation/geothermie-1/geothermie-weltweit-und-zukunft/ (June 2018)

  29. https://geothermie-schweiz.ch/wp_live/wp-content/uploads/2015/10/III_Bertani2015_Worldwide_power_2010-2014.pdf (February 2020)

  30. B.M Buchholz, T. Stephanblome, H. Frey,  N. Lewald, Z.A. Styczynski, C. Schwaegerl. Advanced planning and operation of dispersed generation ensuring power quality, security and efficiency in distribution systems. Proceedings CIGRE 2004, C6-206, Paris 29.8.-3.9.2004

    Google Scholar 

  31. https://en.wikipedia.org/wiki/List_of_pumped-storage_hydroelectric_power_stations (June 2018)

  32. https://www.statista.com/statistics/689667/pumped-storage-hydropower-capacity-worldwide-by-country/ (June 2018)

  33. http://www.uni-saarland.de/fak7/fze/AKE_Archiv/AKE2003H/AKE2003H_Vortraege/AKE2003H03c_Crotogino_ea_HuntorfCAES_CompressedAirEnergyStorage.pdf (August 2013)

  34. https://de.wikipedia.org/wiki/Druckluftspeicherkraftwerk (June 2018)

  35. D. Sauer, et al. Energy Storage in Power Supply Systems with a High Share of Renewable Sources. Studie der Energietechnischen Gesellschaft im VDE (ETG), Frankfurt, December 2008 http://www.vde.com

  36. http://www.greencarcongress.com/2009/12/panasonic-20091225.html (August 2013)

  37. http://en.wikipedia.org/wiki/Sodium%E2%80%93sulfur_battery (June 2018)

  38. https://www.linkedin.com/pulse/mena-region-next-hot-market-energy-storage-florian-mayr/ (June 2018)

  39. https://www.energy-storage.news/blogs/sponsored-ngks-nas-grid-scale-batteries-in-depth (June 2018)

  40. https://de.wikipedia.org/wiki/Power-to-Gas#Geplante_und_realisierte_Power-to-Gas-Anlagen (June 2018)

  41. http://www.neocarbonenergy.fi/wp-content/uploads/2015/03/diplomityo_vartiainen_vesa.pdf (June 2018)

  42. https://www.nvnom.com/homepage/power-gas-plant-delfzijl/ (June 2018)

  43. https://www.iea.org/media/workshops/2016/energystorageeuwp/EnergygieparkMainzoperationalandeconomicalanalysisoftheworldwidelargestpowertogasplantwithPEMelectrolysis.pdf (June 2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd M. Buchholz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buchholz, B., Styczynski, Z. (2020). Smart Generation: Resources and Potentials. In: Smart Grids . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60930-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60930-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60929-3

  • Online ISBN: 978-3-662-60930-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics