Skip to main content

Prediction of the Bond Strength of Thermoplastics Welded by Laser Transmission Welding

  • Conference paper
  • First Online:
Advances in Polymer Processing 2020

Abstract

Laser transmission welding is one of various welding techniques used to join thermoplastics. Low heat introduction into the welded parts and a high welding speed are the reasons why laser transmission welding established itself as a joining process in the plastics processing industry. To minimise defective parts and maximise productivity, it is essential to determine a set of ideal welding parameters that allow maximum bond strength at the lowest possible cycle times. To facilitate this process, simulation models provide detailed analysis without the need for destructive and costly part testing. To predict the weld strength of two thermoplastic parts joined by laser transmission welding, the Institute for Plastics Processing has developed a model that combines the simulated thermal properties of the material during and after welding with the molecular behaviour of plastic melts. Based on the results of the thermal modelling of the welding process a mathematical model describing the movement of polymer chains is used to calculate the resulting bond strength depending on material properties as well as heating and cooling rates. The temperature data of nodes situated at the interface of both welding partners are extracted from the simulation for every time increment of the simulation. The model, which is based on the reptation theory of polymer melts, is then used with these data and the bond strength is calculated. The results are validated by tensile tests on welded parts with the same input parameters used in simulation. In first results, the calculated bond strength shows a good agreement with the values measured in tensile tests. Occasional deviations can be explained by the fact that the material decomposition occurring in experimental welds is not considered in the thermal simulation and the reptation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acherjee, B., Kuar, A.S., Mitra, S., Misra, D.: Modeling of laser transmission contour welding process using FEA and DoE. Opt. Laser Technol. 44(5), 1281–1289 (2012)

    Article  Google Scholar 

  2. Bastien, L.J., Gillepie Jr., J.W.: A non-isothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics. Polym. Eng. Sci. 31(24), 1721–1730 (1991)

    Article  Google Scholar 

  3. Becker, F.: Einsatz des Laserdurchstrahlschweißens zum Fügen von Thermoplasten. Dissertation, Universität Paderborn, Paderborn (2003)

    Google Scholar 

  4. Beiss, T.: Einführung, Technologie- und Branchenüberblick. In: Proceeding of Kunststoffe erfolgreich verbinden – Innovative Fügetechnologien für die Praxis. Aachen (2016)

    Google Scholar 

  5. Bonefeld, D.: Eigenspannungen, Spaltüberbrückung und Strahloszillation beim Laserdurchstrahlschweissen. Dissertation, Universität Paderborn, Paderborn (2012)

    Google Scholar 

  6. Chen, M.: Gap bridging in laser transmission welding of thermoplastics. Dissertation, Queen’s University Ontario, Ontario (2009)

    Google Scholar 

  7. Coelho, J.P., Abreu, M.A., Pires, M.C.: High-speed laser welding of plastic films. Opt. Lasers Eng. 34(10), 385–395 (1991)

    Google Scholar 

  8. De Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(1), 572–579 (1971)

    Article  Google Scholar 

  9. Fargas, M., Wilke, L., Meier, O., Potente, H.: Analysis of weld seam quality for laser transmission welding of thermoplastics based on fluid dynamical processes. In: Proceedings of the 65th Annual Technical Conference (ANTEC). Cincinatti (2007)

    Google Scholar 

  10. Fiegler, G.: Ein Beitrag zum Prozessverständnis des Laserdurchstrahlschweißens von Kunststoffen anhand der Verfahrensvarianten Quasi-Simultan- und Simultanschweißen. Dissertation, Universität Paderborn, Paderborn (2007)

    Google Scholar 

  11. Frick, T.: Untersuchung der prozessbestimmenden Strahl-Stoff-Wechselwirkungen beim Laserstrahlschweißen von Kunststoffen. Dissertation, Friedrich-Alexander-Universität Erlangen- Nürnberg, Erlangen (2007)

    Google Scholar 

  12. Grewell, D., Benatar, A.: Semiempirical, squeeze flow, and intermolecular diffusion model. II. Model verification using laser microwelding. Polym. Eng. Sci. 48(8), 1542–1549 (2008)

    Article  Google Scholar 

  13. Guevara-Morales, A., Figueroa-Lopez, U.: Residual stresses in injection molded products. J. Mater. Sci. 43(13), 4399–4415 (2014)

    Article  Google Scholar 

  14. Gupta, S.K., Pal, P.K.: Analysis of through transmission laser welding of nylon6 by finite element simulation. Manag. Prod. Eng. Rev. 9(4), 56–69 (2018)

    Google Scholar 

  15. Hastenberg, C.H.V., Wildervanck, P.C., Leenen, A.J.H., Schennink, G.: The measurement of thermal stress distributions along the flow path in injection-molded flat plates. Polym. Eng. Sci. 32(7), 506–515 (1992)

    Article  Google Scholar 

  16. Hopmann, Ch., Bölle, S., Kreimeier, S.: Modeling of the thermally induced residual stresses during laser transmission welding of thermoplastics. Weld. World 63, 1–13 (2019)

    Article  Google Scholar 

  17. Ilie, M., Kneip, J.C., Mattei, S., Nichici, A., Roze, C., Girasole, T.: Through-transmission laser welding of polymers – Temperature field modeling and infrared investigation. Infrared Phys. Technol. 51(1), 73–79 (2007)

    Article  Google Scholar 

  18. Jänecke, M.: Leichtbau mit technischen Textilien. Kunststoffe 105(2), 26–30 (2015)

    Google Scholar 

  19. Jones, I.: Laser welding of plastic components. Assem. Autom. 22(2), 129–135 (2002)

    Article  Google Scholar 

  20. Juhl, T.B., Christiansen, J.D., Jensen, E.A.: Investigation on high strength laser welds of polypropylene and high-density polyethylene. J. Appl. Polym. Sci. 1289(5), 2679–2685 (2013)

    Article  Google Scholar 

  21. Klein, H.M.: LaserschweiĂźen von Kunststoffen in der Mikrotechnik. Dissertation, RWTH Aachen, Aachen (2001)

    Google Scholar 

  22. Kreimeier, S.: Thermische Simulation des LaserdurchstrahlschweiĂźprozesses von teilkristallinen Thermoplasten. Dissertation, RWTH Aachen, Aachen (2017)

    Google Scholar 

  23. Lakemeier, P., Schoeppner, V.: Simulation-based investigation of the temperature influence during laser transmission welding of thermoplastics. In: Proceedings of the 75th Annual Technical Conference (ANTEC), Anaheim (2017)

    Google Scholar 

  24. Labeas, G.N., Moraitis, G.A., Katsiropoulos, Ch.V: Optimization of laser transmission welding process for thermoplastic composite parts using thermo-mechanical simulation. J. Compos. Mater. 44(1), 113–130 (2010)

    Article  Google Scholar 

  25. Mayboudi, L.S.: Heat transfer modelling and thermal imaging experiments in laser transmission welding of thermoplastics. Dissertation, Queen’s University Ontario, Ontario (2008)

    Google Scholar 

  26. Mayboudi, L.S., Birk, A.M., Zak, G., Bates, P.J.: Infrared observations and finite element modeling of a laser transmission welding process. J. Laser Appl. 21(3), 111–118 (2009)

    Article  Google Scholar 

  27. Messner, R.W.: Joining composite materials and structures: some thought-provoking possibilities. J. Thermoplast. Compos. Mater. 17(1), 51–75 (2004)

    Article  Google Scholar 

  28. N.N.: PlasticsEurope Annual Review 2017–2018. Annual report, Plastics Europe AISBL, Brussels (2018)

    Google Scholar 

  29. Osswald, T.A.: Rudolph, N.: Polymer rheology – fundamentals and applications, 1st edn. Hanser, München (2015)

    Google Scholar 

  30. Potente, H., Wilke, L., Ridder, H., Mahnken, R., Shaben, A.: Simulation of the residual stresses in the contour laser welding of thermoplastics. Polym. Eng. Sci. 48(4), 767–773 (2008)

    Article  Google Scholar 

  31. Reinl, S., Rau, A.: Laserkunststoffschweißen in der industriellen Serienproduktion. Laser Mag. 28(2), 17–21 (2011)

    Google Scholar 

  32. Sparks, J.A.: Low cost technologies for aerospace applications. Microprocess. Microsyst. 20(8), 449–454 (1997)

    Article  Google Scholar 

  33. Wang, C., Yan, T., Liu, H., Zhong, H.: Temperature field and fluid field simulation of laser transmission welding polycarbonate. In: Proceedings of the 76th Annual Technical Conference (ANTEC), Orlando (2018)

    Google Scholar 

  34. Zoubeir, T., Elhem, G.: Numerical study of laser diode transmission welding of a polypropylene mini-tank: temperature field and residual stresses distribution. Polym. Test. 30(1), 23–34 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

The depicted research has been funded by the Deutsche Foschungsgesellschaft (DFG) as part of the research project “Integrative calculation of the weld strength of plastics parts based on an interdiffusion model presented for laser transmission welding.” We would like to extend our gratitude to the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Bölle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hopmann, C., Bölle, S., Reithmayr, L. (2020). Prediction of the Bond Strength of Thermoplastics Welded by Laser Transmission Welding. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_20

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics