Skip to main content

Potential of Mesoscale Structural Elements in the Interface of Hybrid CFRP-Metal-Parts on the Load Transfer

  • Conference paper
  • First Online:
Advances in Polymer Processing 2020

Abstract

The applicability and the influence of pin structures in dependence on the adhesive properties in hybrid joints are investigated in the course of this paper. First, single lap joint experiments are performed and a Finite Element model is used to obtain force-displacement curves, and thus the specific simulation parameters. The comparison of different models with a pin a semi-spherical pin, and without a pin show that the pin has a positive influence, especially on low adhesive strengths. In contrast, the pin has a lesser effect for adhesive joints with high strength. In the following study, different pin geometries, pin sizes and adhesive bonding parameters are tested. It is shown that the negative influence of a pin for high adhesive strength can be compensated by the specific design of a pin. Furthermore, small pins ensure the best force transmission performance. Finally, the alignment of elliptical pins depends on the bonding properties, as for high strength parameters, the pin should be oriented in load direction, and for low strength parameters, it is ideal to orient the pin transversely to the load direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischer, J., Nieschlag, J.: Introduction to CFRP-metal hybrids for lightweight structures. Prod. Eng. 12(2), 109–111 (2018). https://doi.org/10.1007/s11740-018-0825-0

    Article  Google Scholar 

  2. Kießling, R., Ihlemann, J., Pohl, M., Stommel, M., Dammann, C., Mahnken, R., Bobbert, M., Meschut, G., Hirsch, F., Kästner, M.: On the design, characterization and simulation of hybrid metal-composite interfaces. Appl. Compos. Mater. 24(1), 251–269 (2017). https://doi.org/10.1007/s10443-016-9526-z

    Article  Google Scholar 

  3. Messler, R.W.: Joining composite materials and structures: some thought-provoking possibilities. J. Thermoplast. Compos. Mater. 17(1), 51–75 (2004). https://doi.org/10.1177/0892705704033336

    Article  Google Scholar 

  4. Ngyuen, A., Brandt, M., Feih, S., Orifici, A.: Hierarchical surface features for improved bonding and fracturetoughness of metal–metal and metal–composite bonded joints. Int. J. Adhes. Adhes. 66, 81–92 (2016)

    Article  Google Scholar 

  5. Ngyuen, A., Brandt, M., Feih, S., Orifici, A., Amarasinghe, C.: Pin pull-out behaviour for hybrid metal-composite joints with integrated reinforcements. Compos. Struct. 155, 160–172 (2016)

    Article  Google Scholar 

  6. Ngyuen, A., Brandt, M., Feih, S., Orifici, A., Amarasinghe, C.: Loading, support and geometry effects for pin-reinforced hybrid metal-composite joints. Compos.: Part A 98, 192–206 (2017)

    Article  Google Scholar 

  7. Ucsnik, S., Scheerer, M., Zaremba, S., Pahr, D.H.: Experimental investigation of a novel hybrid metal-composite joining technology. Compos.: Part A 41, 369–374 (2010)

    Article  Google Scholar 

  8. Ucsnik, S.: Pin-based hybrid joining. 5th Anniversary of the Institute of Carbon Composite, München (2014)

    Google Scholar 

  9. Huelsbusch, D., Haack, M., Solbach, A., Emmelmann, C., Walther, F.: Influence of pin size on tensile and fatigue behavior of TI-CFRP hybrid structures produced by laser additive manufacturing. In: ICCM International Conferences on Composite Materials, July 2015

    Google Scholar 

  10. Teufelberger Composite GmbH: T-IGEL® Anbindung. https://www.teufelberger.com/ (2019)

  11. Fronius International GmbH: CMT-Pin® Anbindung. https://www.fronius.com/de/schweisstechnik/kompetenzen/schweissprozesse/cmt-pin (2019)

  12. Dröder, K., Brand, M., Kühn, M.: Numerical and experimental analyses on the influence of array patterns in hybrid metal-FRP materials interlocked by mechanical undercuts. Procedia CIRP 62, 51–55 (2017)

    Article  Google Scholar 

  13. Günther, F., Pohl, M., Stommel, M., Kretzschmar, V., Scheuermann, G.: Optimising mechanical interlocking interface of CFRP-hybrids. Hybrid Materials and Structures, Bremen (2018)

    Google Scholar 

  14. Dassault Systemes Simulia: Course – modeling fracture and failure with abaqus. Lecture Notes. https://www.3ds.com/products-services/simulia/services/training-courses/course-descriptions/modeling-fracture-and-failure-with-abaqus/ (2019). Zugegriffen: 15. Juli 2019

  15. Turon, A., Costa, J., Camanho, P.P., Dávila, C.G.: Simulation of delamination in composites under high-cycle fatigue. Compos. Part A: Appl. Sci. Manuf. 38(11), 2270–2282 (2007). https://doi.org/10.1016/j.compositesa.2006.11.009

    Article  Google Scholar 

  16. Su, X., Yang, Z., Liu, G.: Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in abaqus. Acta Mech. Solida Sin. 23, 271–282 (2010)

    Article  Google Scholar 

  17. Stuparu, F.A., Apostol, D.A., Constantinescu, D.M., Picu, C.R., Sandu, M., Sorohan, S.: Cohesive and XFEM evaluation of adhesive failure for dissimilar single-lap joints. Procedia Struct. Int. 2, 316–325 (2016). https://doi.org/10.1016/j.prostr.2016.06.041

    Article  Google Scholar 

  18. Reinoso, J., Blázquez, A., París, F.: Damage simulations in composite structures in the presence of stress gradients. In: Modeling Damage, Fatigue and Failure of Composite Materials, pp. 391–424 (2015)

    Chapter  Google Scholar 

  19. Pirondi, A., Giuliese, G., Moroni, F., Bernasconi, A., Jamil, A.: Simulating the mixed-mode fatigue delamination/debonding in adhesively-bonded composite joints. In: Fatigue and Fracture of Adhesively-Bonded Composite Joints, pp. 369–400 (2014)

    Chapter  Google Scholar 

  20. Moya-Sanz, E.M., Ivañez, I., Garcia-Castillo, S.K.: Effect of the geometry in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile load. Int. J. Adhes. Adhes. 72, 23–29 (2017). https://doi.org/10.1016/j.ijadhadh.2016.10.009

    Article  Google Scholar 

  21. Minnicino, M.A., Santare, M.H.: Modeling the progressive damage of the microdroplet test using contact surfaces with cohesive behavior. Compos. Sci. Technol. 72(16), 2024–2031 (2012). https://doi.org/10.1016/j.compscitech.2012.09.009

    Article  Google Scholar 

  22. Jung Lee, M., Min Cho, T., Seock Kim, W., Chai Lee, B., Ju Lee, J.: Determination of cohesive parameters for a mixed-mode cohesive zone model. Int. J. Adhes. Adhes. 30(5), 322–328 (2010). https://doi.org/10.1016/j.ijadhadh.2009.10.005

    Article  Google Scholar 

  23. Harper, P.W., Sun, L., Hallett, S.R.: A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour. Compos. Part A: Appl. Sci. Manuf. 43(4), 722–734 (2012). https://doi.org/10.1016/j.compositesa.2011.12.016

    Article  Google Scholar 

  24. Giuliese, G., Pirondi, A., Moroni, F.: A cohesive zone model for three-dimensional fatigue debonding/delamination. Procedia Mater. Sci. 3, 1473–1478 (2014)

    Article  Google Scholar 

  25. Campilho, R.D., Fernandes, T.A.: Comparative evaluation of single-lap joints bonded with different adhesives by cohesive zone modelling. Procedia Eng. 114, 102–109 (2015). https://doi.org/10.1016/j.proeng.2015.08.047

    Article  Google Scholar 

  26. Anyfantis, K.N.: Finite element predictions of composite-to-metal bonded joints with ductile adhesive materials. Compos. Struct. 94(8), 2632–2639 (2012). https://doi.org/10.1016/j.compstruct.2012.03.002

    Article  Google Scholar 

  27. DIN EN 6034: Bestimmung der interlaminaren Energiefreisetzungsrate, Mode II (2015)

    Google Scholar 

  28. DIN EN 6033: Bestimmung der interlaminaren Energiefreisetzungsrate, Mode I (2015)

    Google Scholar 

  29. Dassault Systems: Simulia Abaqus Unified FEA (2017)

    Google Scholar 

  30. Autodesk: Helius PFA 2019. https://www.autodesk.com/products/helius-pfa/overview (2019). Accessed 17 July 2019

Download references

Acknowledgment

The funding by the German Research Foundation (DFG) for the project SPP1712 “Intrinsic Hybrid Composites for Lightweight Structures – Fundamentals of Manufacturing, Characterization and Design” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Günther, F., Ewens, J., Stommel, M. (2020). Potential of Mesoscale Structural Elements in the Interface of Hybrid CFRP-Metal-Parts on the Load Transfer. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_18

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics