Skip to main content

Targeted Manipulation of Fibre Orientation Through Relative Movement in an Injection Mould

  • Conference paper
  • First Online:
Advances in Polymer Processing 2020

Abstract

The injection moulding of fibre-reinforced plastics leads to a flow related characteristic microstructure with fibres aligned in flow direction in the shell layers and fibres aligned transversely to the flow direction in the core layer. The combination of a design related gate location and the flow related microstructure can lead to an unfavourable fibre orientation. For example, the flow direction for rotationally symmetric parts under internal pressure is often in axial direction and therefore the main fibre orientation is transversely aligned to the critical tangential tension. This leads to high wall thicknesses, increase in weight and material inefficiency. This paper shows first results of the targeted manipulation of the fibre orientation for long and short fibre reinforced thermoplastics through relative movement. The relative movement of opposing mould surfaces is realised through a rotating core in the injection mould and allows the reorientation of the fibres in tangential direction through shearing of the melt. The evaluation of this process is done by mechanical tests, microscopic investigations and computed tomography scans and shows a significant increase of transversely aligned fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flepp, A.: Optimal für den Motor. Kunststoffe 8(2015), 86–89 (2015)

    Google Scholar 

  2. Baleno, B., Holtzberg, M.: Der kunststoffintensive Motor. Kunststoffe 3(2016), 28–32 (2016)

    Google Scholar 

  3. Schmachtenberg, E., Brandt, M., Menning, G., et al.: Faserverstärkung richtig simulieren. Kunststoffe 5(2004), 94–99 (2004)

    Google Scholar 

  4. Johannaber, F., Michaeli, W.: Handbuch Spritzgießen, 2nd edn. Hanser, München (2014)

    Google Scholar 

  5. Schoßig, Marcus: Schädigungsmechanismen in faserverstärkten Kunststoffen, 1st edn. Vieweg+Teubner, Wiesbaden (2011)

    Book  Google Scholar 

  6. Dehennau, C., Leo, V., Cuvelliez, C.: Process for moulding a thermoplastic material by injection onto a rotating core. US Patent 5,798,072, publication date 1998/08/25

    Google Scholar 

  7. Dehennau, C., Leo, V., Cuvelliez, C.: Process for moulding a thermoplastic material by injection onto a rotating core. US Patent 5,824,254, publication date 1998/10/20

    Google Scholar 

  8. Dehennau, C., Leo, V., Cuvelliez, C.: Process for moulding a thermoplastic material by injection onto a rotating core. DE Patent 69613283T2, publication date 2002/04/18

    Google Scholar 

  9. Warkoski, G.: Das Spritzgießen von verstärkten Polymeren mit rotierendem Kern. Gummi Fasern Kunststoffe GAK 7(2006), 439–443 (2006)

    Google Scholar 

  10. ASTM 2290: Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disk Method. ASTM International, West Conshohocken, USA (2003)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the Federal Ministry for Economic Affairs and Energy of Germany in the project Werkzeugsystem mit drehendem Kern (project number ZF4153401LL5). We would like to thank H. Sundermeier GmbH, Hüllhorst, Germany, for their active work as cooperation partner in this project. Further thanks goes to the companies Arburg GmbH & Co KG, Loßburg, Germany, for the provision of an injection moulding machine and EMS-Chemie AG, Domat/EMS, Switzerland and A. Schulman, Inc., Fairlawn, USA for support with material. At last, we would like to thank Mr. Uwe Becker, Managing Director of MKS-Kunststoffspritzguss GmbH, Iserlohn, Germany, for the advisory support in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Land .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Land, P., Krumpholz, T. (2020). Targeted Manipulation of Fibre Orientation Through Relative Movement in an Injection Mould. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_10

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics