Advertisement

Junge Narben – Alte Narben: Wie das Narbenalter die Therapie beeinflusst

  • Michaela Liedler
Chapter
  • 90 Downloads

Zusammenfassung

Wie beeinflusst das jeweilige Operationsalter der peritonealen Adhäsionen, faszialen Verklebungen und Narben die Anwendung der Liedler-Techniken? Zur Beantwortung dieser Frage werden in diesem Kapitel die Behandlungsmöglichkeiten mit dem Liedler-Konzept innerhalb der einzelnen Wundheilungsphasen erläutert. Abhängig von den verschiedenen Phasen ist bei jungen oder alten Narben die Anwendung bestimmter Techniken empfehlenswert oder auch kontraindiziert. Zusätzlich liefert das Kapitel wertvolle praktische Hinweise, um den Patienten während des gesamten Heilungsverlaufes postoperativ zu begleiten. Für junge postoperative Narben werden praktische Empfehlungen aufgezeigt, die der Patient selbst bereits direkt nach der Operation anwenden kann, um der Ausbildung von peritonealen Adhäsionen präventiv vorzubeugen bzw. diesen entgegenzuwirken.

Literatur

  1. Asmussen PD, Söllner B (2010) In: Kammerlander (Hrsg) Die Prinzipien der Wundheilung, Sonderausgabe. Akademie-ZWM-KAMMERLANDER-WFI, EmbrachGoogle Scholar
  2. Bishop JH, Fox JR, Maple R, Loretan C, Badger GJ, Henry SM, Vizzard MA, Langevin HM (2016) Ultrasound evaluation of the combined effects of thoracolumbar fascia injury and movement restriction in a porcine model. PLoS One 11(1).  https://doi.org/10.1371/journal.pone.0147393.eCollection
  3. Bove, G. M., Chapelle SL, Hanion KE, Diamond MP, .Mokler DJ. 2017. Attenuation of postoperative adhesions using a modeled manual therapy. In: PLoS One 12 (6). https://doi.org/e0178407.
  4. Cao TV, Hicks MR, Standley PR (2013) In vitro biomechanical stain regulation of fibroblast wound healing. J Am Osteopath Assoc 113(11):806–818CrossRefGoogle Scholar
  5. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR (2014) Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72–84Google Scholar
  6. Carano A, Siciliani G (1996) Effects of continuous and intermittend forces on human fibroblasts in vitro. Eur J Orthod 18(1):19–26CrossRefGoogle Scholar
  7. Cheong YC, Laird SM, Shelton JB, Ledger WL, Cooke ID (2001) Peritoneal healing and adhesion formation/reformation. Hum Reprod Update 7(6):556–566CrossRefGoogle Scholar
  8. Coccolini F, Ansaloni L, Manfredi R, Campanati L, Poiasina E, Bertoli P, Capponi MG et al (2013) Peritoneal adhesion index (PAI): proposal of a score for the „ignored iceberg“ of medicine and surgery. World J Emerg Surg 8:1–6CrossRefGoogle Scholar
  9. DiZerega, Gere S. 2000. Peritoneum, peritoneal healing, and adhesion formation. Peritoneal surgery, Bd. Peritoneal surgery. New York: Springer. 3-37.Google Scholar
  10. Dodd JG, Good MM, Nguyen TL, Grigg AI, Batia LM, Standley PR (2006) In vitro biophysical strain model for understanding mechanisms of osteopathic manipulative treatment. J Am Osteopath Assoc 106(3):157–166Google Scholar
  11. Fernandez de las Penas C, Alonso-Blanco C, Fernandez-Carnero J, Miangolarra-Page JC (2006) The immediate effect of ischemic compression technique and transverse friction massage on tenderness of active and latent myofascial trigger points: a pilot study. J Bodyw Mov Ther 9(4):298–309Google Scholar
  12. Fourie WJ (2014) Operationen und Narbenbildung. In: Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 308–315Google Scholar
  13. Ghahiry A, Rezaei F, Khouzani RK, Ashrafinia M (2012) Comparative analysis of long-term outcomes of Misgav-Ladach technique cesarean section and traditional cesarean section. J Obstet Gynaecol Res 38(10):1.235–1.239CrossRefGoogle Scholar
  14. Guimberteau J-C, Armstrong C (2016) Faszien Architektur des menschlichen Fasziengewebes, 1. Aufl. KVM − Der Medizinverlag, BerlinGoogle Scholar
  15. von Heymann W, Stecco C (2016) Fasziale Dysfunktionen. Man Med 54:303–306.  https://doi.org/10.1007/s00337-016-0172-1CrossRefGoogle Scholar
  16. Hinz B, Gabbiani G (2003) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14:538–546CrossRefGoogle Scholar
  17. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1.009–1.020CrossRefGoogle Scholar
  18. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Review recent developments in myofibroblast biology paradigms for connective tissue remodeling. Am J Pathol 180(4):1.340–1.355CrossRefGoogle Scholar
  19. Ingber DE (1998) The architecture of life. Sci Am 278(1):48–57CrossRefGoogle Scholar
  20. Ingber DE (2003a). Mechanobiology and diseases of mechanotransduction. Annals Med 35(8):564–577Google Scholar
  21. Ingber DE (2003b) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Scie 116(7):1157–1173Google Scholar
  22. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3):163–179Google Scholar
  23. Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95:3.470–3.478CrossRefGoogle Scholar
  24. Kobesova A, Lewit K (2000) A case of a pathogenic active scar. ACO 9(1):17–19Google Scholar
  25. Langevin HM, Bouffard NA, Badger GJ, Iatridis JC, Howe AK (2005) Dynamic fibroblast cytoskeletal respose to subcutaneous tissue stretch ex vivo and in vivo. Am J Phys Cell Phys 288(C):747–756CrossRefGoogle Scholar
  26. Langevin HM, Helene M, Fox JR, Koptiuch C, Badger GJ, Greenan-Naumann AC, Bouffard NA, Konofagou EE, Lee W-N, Triano JJ, Henry SM (2011) Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelt Disord 12(203):1–11Google Scholar
  27. Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, Standley PR (2010) In vitro modeling of repetitive motion injury and myofascial release. J Bodyw Mov Ther 14(2):162–171CrossRefGoogle Scholar
  28. Muts R (2015) Bahandlung der peritonealen Bewegungsflächen in Beziehung der abdominalen Organen. In: Masterclass Osteopathie gehalten auf der Osteopathische Behandlungskonzepte 12. Peritoneum, WienGoogle Scholar
  29. Standley PR, Meltzer KR (2008) In vitro modeling of repetive motion strain and manual medicine treatments: potential roles for pro- and anti-inflammatory cytocines. J Bodyw Mov Ther 12:201–203CrossRefGoogle Scholar
  30. Stanziu D, Menzies D (2007) The magnitude of adhesion-related problems. Color Dis 9(2):35–38CrossRefGoogle Scholar
  31. Stecco C, Pavan P, Pachera P, De Caro R, Natali A (2014) Investigation of the mechanical properties of the human crural fascia and their possible clinical implications. Surg Radiol Anat 36:25–32CrossRefGoogle Scholar
  32. Threlkeld AJ (1992) The effects of manual therapy on connective tissue. Phys Ther 72(12):893–902CrossRefGoogle Scholar
  33. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechanoregulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363CrossRefGoogle Scholar
  34. Tozzi P, Bongiorno D, Vitturini C (2011) Fascial release effects on patients with non-specific cervical or lumbar pain. J Bodyw Mov Ther 15(4):405–416CrossRefGoogle Scholar
  35. Van den Berg F (2014) Die Physiologie der Faszie. In: Schleip R, Findley TW, Chaltow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 110–114Google Scholar
  36. Wang H-Q, Wei Y-Y, Wu Z-X, Luo Z-J (2009) „Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskelt Disord 10:105CrossRefGoogle Scholar
  37. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytosceleton. Science 216:1.124–1.127CrossRefGoogle Scholar
  38. Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenović D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616CrossRefGoogle Scholar
  39. Wurn LJ, Wurn BF, Roscow AS, King R, Scharf ES, Shuster JJ (2004) Increasing orgasm and decreasing dyspareunia by a manual physical therapy technique. Medscape Gen Med 6(4):47Google Scholar
  40. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Michaela Liedler
    • 1
  1. 1.WienÖsterreich

Personalised recommendations