Advertisement

Die Rolle von Schmerz im Liedler-Konzept

  • Michaela Liedler
Chapter
  • 87 Downloads

Zusammenfassung

Welche Auswirkungen haben Schmerzen auf unseren Körper? Wie werden Schmerzinformationen wahrgenommen und verarbeitet? Kann Schmerz eventuell auch ein nützlicher Helfer während der therapeutischen Behandlung sein und falls ja, wie? Dieses Kapitel gibt Aufschluss über die Definition von Schmerz und beleuchtet den akuten und den chronischen Schmerz. Ausführlich wird erklärt, welche Rolle der Schmerz im Liedler-Konzept einnimmt und warum die Liedler-Techniken teilweise auch sehr schmerzhaft sind. Mögliche Zusammenhänge von peritonealen Adhäsionen und chronischen Schmerzzuständen werden ebenso beschrieben wie deren Auswirkungen auf körperliche Kompensationssysteme. Im Fokus steht dabei, wie hier durch die Liedler-Techniken potenziell Einfluss genommen werden kann, ergänzt durch die Ergebnisse der dazugehörigen Studie von 2017.

Literatur

  1. Baliki MN, Apkarian AV (2015) Nociception, pain, negative moods, and behavior selection. Neuron 87(3):474–491PubMedCentralCrossRefPubMedGoogle Scholar
  2. Betrán AP, Merialdi M, Lauer JA et al (2007) Rates of caesarean section: analysis of global, regional and national estimates. Paediatr Perinat Epidemiol 21(2):98–113CrossRefPubMedGoogle Scholar
  3. Bishop JH, Fox JR, Maple R, Loretan C et al (2016) Ultrasound evaluation of the combined effects of thoracolumbar fascia injury and movement restriction in a porcine model. PLoS One 11(1).  https://doi.org/10.1371/journal.pone.0147393.eCollection
  4. Bordoni B, Zanier E (2014) Clinical and symptomatological reflections: The fascial system. J Multidiscip Healthc 7:401–411PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bordoni B, Zanier E (2013) Anatomic connections of the diaphragm: influence of respiration on the body system. J Multidiscip Healthc 6:281–291PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bouffard NA, Cutroneo K, Badger GJ et al (2008) Tissue stretch decreases soluble TGF-β1 and Type-1 procollagen in mouse subcutaneous connective tissue: evidence from ex vivo and in vivo models. J Cell Physiol 214(2):389–395PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bove Geoffrey M, Susan L Chapelle (2011) Visceral mobilization can lyse and prevent peritoneal adhesions in a rat model. J Bodyw Mov Ther 1–7Google Scholar
  8. Bove GM, Chapelle SL, Hanion KE, Diamond MP, Mokler DJ (2017) Attenuation of postoperative adhesions using a modeled manual therapy. PLoS One 12(6):e0178407.  https://doi.org/10.1371/journal.pone.0178407CrossRefPubMedCentralPubMedGoogle Scholar
  9. Brüggmann D, Tschartchian G, Wallwiener M, Münstedt K et al (2010) Intra-abdominal adhesions definition, origin, significance in surgical practice, and treatment options. Dtsch Ärztebl Int 107(44):769–775PubMedCentralPubMedGoogle Scholar
  10. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR (2014) Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopathic Assoc 115(2):72–84Google Scholar
  11. Carano A, Siciliani G (1996) Effects of continuous and intermittend forces on human fibroblasts in vitro. Eur J Orthod 18(1):19–26PubMedCentralCrossRefPubMedGoogle Scholar
  12. Chamorro Comesaña A, del Pilar Suarez Vicente M, Ferreira TD, Perez-La Fuente Varela DM et al (2017) Effect of myofascial induction therapy on post-c-section scars, more than one and a half years old. Pilot study. J Body Mov Ther 21:197–204CrossRefGoogle Scholar
  13. Chaparro LE, Smith SA, Moore RA, Wiffen PJ et al. 2013. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst Rev (7):CD008307.  https://doi.org/10.1002/14651858.CD008307
  14. Chapelle SL, Bove GM (2013) Visceral massage reduces postoperative ileus in a rat model. J Body Mov Ther 17(1):83–88CrossRefGoogle Scholar
  15. Cheong YC, Laird SM, Shelton JB et al (2001) Peritoneal healing and adhesion formation/reformation. Hum Reprod Update 7(6):556–566PubMedCentralCrossRefPubMedGoogle Scholar
  16. Coccolini F, Ansaloni L, Manfredi R et al (2013) Peritoneal adhesion index (PAI): proposal of a score for the ‚ignored iceberg‘ of medicine and surgery. World J Emerg Surg 8:1–6PubMedCentralCrossRefPubMedGoogle Scholar
  17. Deyo RA, Dworkin SF, Amtmann D, Andersson G et al (2015) Report of the NIH task force on research standards for chronic low back pain. Phys Ther 95(2):e1–e18.  https://doi.org/10.2522/ptj.2015.95.2.e1.CrossRefPubMedCentralPubMedGoogle Scholar
  18. DiZerega Gere S (2000) Peritoneum, peritoneal healing, and adhesion formation. In: Peritoneal surgery. Bd. Peritoneal surgery. Springer, New YorkGoogle Scholar
  19. DiZerega GS, Campeau JD (2001) Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update 7:547–555PubMedCentralCrossRefPubMedGoogle Scholar
  20. DiZerega GS, Rogers KE (1992) The peritoneum, Bd 1. Springer, New York, S 1–23CrossRefGoogle Scholar
  21. Dodd JG, Good MM, Nguyen TL, Grigg AI et al (2006) In vitro biophysical strain model for understanding mechanisms of osteopathic manipulative treatment. J Am Osteopathic Assoc 106(3):157–166Google Scholar
  22. Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120(11):3760–3772.  https://doi.org/10.1172/JCI42843CrossRefPubMedCentralPubMedGoogle Scholar
  23. Fernandez de las Penas C, Alonso-Blanco C, Fernandez-Carnero J, Miangolarra-Page JC (2006) The immediate effect of ischemic compression technique and transverse friction massage on tenderness of active and latent myofascial trigger points: a pilot study. J Body Mov Ther 9(4):298–309Google Scholar
  24. Ghahiry A, Rezaei F, Khouzani RK, Ashrafinia M (2012) Comparative analysis of long-term outcomes of Misgav-Ladach technique cesarean section and traditional cesarean section. J Obstet Gynaecol Res 38(10):1.235–1.239CrossRefGoogle Scholar
  25. Glare P, Aubry KR, Myles PS (2019) Transition from acute to chronic pain after surgery. National Library of Medicine. Lancet 393(10180):1537–1546CrossRefPubMedGoogle Scholar
  26. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257PubMedCentralCrossRefPubMedGoogle Scholar
  27. Guimberteau J-C, Armstrong C (2016) Faszien Architektur des menschlichen Fasziengewebes, 1. Aufl. KVM − Der Medizinverlag, BerlinGoogle Scholar
  28. Guimberteau J-C, Delage JP, Mcgrouther DA, Wong JKF (2010) The microvacuolar system: how connective tissue sliding works. J Hand Surg 35(8):614–622CrossRefGoogle Scholar
  29. von Heymann W, Stecco C (2016) Fasziale Dysfunktionen. Man Med 54:303–306.  https://doi.org/10.1007/s00337-016-0172-1CrossRefGoogle Scholar
  30. Hinz B, Gabbiani G (2003) Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90:993–1.002PubMedCentralCrossRefPubMedGoogle Scholar
  31. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1.009–1.020CrossRefGoogle Scholar
  32. Hinz B, Phan SH, Thannickal VJ, Prunotto M et al (2012) Review recent developments in myofibroblast biology paradigms for connective tissue remodeling. Am J Pathol 180(4):1.340–1.355CrossRefGoogle Scholar
  33. IASP, Mersky H, Bogduk N (1994) Classification of chronic pain part III: pain terms, A current list with definitions and notes on usage, 2. Aufl. IASP Press, SeattleGoogle Scholar
  34. Ingber DE (1998) The architecture of life. Sci Am 278(1):48–57PubMedCentralCrossRefPubMedGoogle Scholar
  35. Ingber DE (2003a) Mechanobiology and diseased of mechanotransduction. Ann Med 35:1–14CrossRefGoogle Scholar
  36. Ingber DE (2003b) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173PubMedCentralCrossRefPubMedGoogle Scholar
  37. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:815–827CrossRefGoogle Scholar
  38. Ingber DE (2008a) Tensegrity and mechanotransduction. J Body Mov Ther 12:198–200CrossRefGoogle Scholar
  39. Ingber DE (2008b) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3):163–179PubMedCentralCrossRefPubMedGoogle Scholar
  40. Ji R-R, Chamessian A, Zhang Y-Q (2016) Pain regulation by non-neuronal cells and inflammation. Science 354(612):572–577PubMedCentralCrossRefPubMedGoogle Scholar
  41. Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95:3.470–3.478CrossRefGoogle Scholar
  42. Kahle W (1991) Taschenatlas der Anatomie Nervensystem und Sinnesorgane, Bd 3, 6. Aufl. Thieme Verlag, StuttgartGoogle Scholar
  43. Katz J, Weinrib A, Fashler SR, Katznelzon R, Shah BR et al (2015) The Toronto General Hospital Transitional Pain Service: development and implementation of a multidisciplinary program to prevent chronic postsurgical pain. J Pain Res 8:695–702PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kobesova A, Lewit K (2000) A case of a pathogenic active scar. ACO 9(1):17–19PubMedGoogle Scholar
  45. Kröner-Herwig B (1996) Psychologische Schmerztherapie Chronischer Schmerz − eine Gegenstandsbestimmung. Springer, Berlin, HeidelbergGoogle Scholar
  46. Langevin HM, Bouffard NA, Badger GJ, Iatridis JC et al (2005) Dynamic fibroblast cytoskeletal respose to subcutaneous tissue stretch ex vivo and in vivo. Am J Phys Cell Phys 288(C):747–756CrossRefGoogle Scholar
  47. Langevin HM, Fox JR, Koptiuch C, Badger GJ et al (2011) Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord 12(203):1–11Google Scholar
  48. Lewit K, Olsanka S (2004) Clinical Importance of active scars: abnormal scars as a cause of myofascial pain. J Manip Physiol Ther 27(6):399–402CrossRefGoogle Scholar
  49. Li W, Neugebauer V (2004) Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain. Pain 110(1–2):112–22.  https://doi.org/10.1016/j.pain.2004.03.015
  50. Liedler Michaela (2017) Einfluss von postoperativen Adhäsionen nach Sektio auf chronischen Low Back Pain − eine Pilotstudie. Masterthese. Krems, DUKGoogle Scholar
  51. Lund I, Yu L-C, Uvnas-Moberg K, Wang J, Yu C, Kurosawa M, Agren G, Rosen A, Lekman M, Lundeberg T (2002) Repeated massage-like stimulation induces long-term effects on nociception: contribution of oxytocinergic mechanisms. Eur J Neurosci 16:330–338CrossRefPubMedGoogle Scholar
  52. Martinez Rodriguez R, del Rio FG (2013) Mechanistic basis of manual therapy in myofascial injuries. Sonoelastographic evolution control. J Body Mov Ther 17:221–234CrossRefGoogle Scholar
  53. Matteini P, Dei L, Carretti E, Volpi N et al (2009) Structural Behavior of Highly Concentrated Hyaluronan. Biomacromolecules 10:1516–1522PubMedCentralCrossRefPubMedGoogle Scholar
  54. Meert GF (2009) Das Becken aus osteopathischer Sicht, 3. Aufl. Urban & Fischer, MünchenGoogle Scholar
  55. Meltzer KR, Cao TV, Schad JF, King H et al (2010) In Vitro Modeling of Repetitive Motion Injury and Myofascial Release. J Body Mov Ther 14(2):162–171CrossRefGoogle Scholar
  56. Muts Robert (2015) Behandlung der peritonealen Bewegungsflächen in Beziehung der abdominalen Organen. Masterclass Osteopathie gehalten auf der Osteopathische Behandlungskonzepte 12: Peritoneum, WienGoogle Scholar
  57. Mutso AA, Radzicki D, Baliki MN, L. Huanget al. (2012) Abnormalities in hippocampal functioning with persistent pain. J Neurosci 32(17):5747–5756.  https://doi.org/10.1523/JNEUROSCI.0587-12.2012PubMedCentralCrossRefPubMedGoogle Scholar
  58. Niedergethmann Marco, Stefan Post (2014) Appendektomie offen. http://www.webop.de/appendektomie-offen-12/
  59. Nilges P, Nagel B (2007) Was ist chronischer Schmerz? Dtsch Med Wochenschr 132:2133–2138CrossRefPubMedGoogle Scholar
  60. Paoletti S (2014) Zwerchfellartige Strukturen. Lehrbuch Faszien, herausgegeben von R. Schleip, T. W. Findely, L. Chaitow, P. A. Huijing, 1. Auflage, 49–53. Urban & Fischer, MünchenGoogle Scholar
  61. Passerieux E, Rossignol R, Letellier T, Delage JP (2007) Physical continuity of the perimysium from myofibers to tendons: Involvement in lateral force transmission in skeletal muscle. J Struct Biol 159:19–28PubMedCentralCrossRefPubMedGoogle Scholar
  62. Pavan GP, Stecco A, Stern R, Stecco C (2014) Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Rep 18(441):1–8Google Scholar
  63. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38(1):5–19.  https://doi.org/10.1016/j.it.2016.10.001CrossRefPubMedGoogle Scholar
  64. Pischinger A (2010) Das System der Grundregulation. Neu herausgegeben von Hartmut Heine, 12. Aufl. Karl F. Haug Verlag, StuttgartGoogle Scholar
  65. Platzer W (1999) Taschenatlas der Anatomie − Bewegungsapparat, Bd 1, 7. Aufl. Thieme Verlag, New YorkGoogle Scholar
  66. Probst P, Büchler E, Doerr-Harim C, Knebel P, Thiel B, Ulrich A, Diener MK (2016) Randomised controlled pilot trial on feasibility, safety and effectiveness of osteopathic MANipulative treatment following major abdominal surgery (OMANT pilot trial). Int J Osteopath Med 20:31–40Google Scholar
  67. Rice AD, King R, Reed ED’A, Patterson K, Wurn BF et al (2013) Manual physical therapy for non-surgical treatment of adhesion-related small bowel obstructions: two case reports. J Clin Med 2(1):1–12PubMedCentralCrossRefPubMedGoogle Scholar
  68. Roman M, Chaudhry H, Bukiet B, Stecco A et al (2013) Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J Am Osteopathic Assoc 113(8):600–610CrossRefGoogle Scholar
  69. Schilder A, Hoheisel U, Magerl W, Benrath J et al (2014) Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain 155:222–231PubMedCentralCrossRefPubMedGoogle Scholar
  70. Schleip R (2003a) Fascial plasticity − a new neurobiological explanation, Part 1. J Body Mov Ther 7(1):11–19CrossRefGoogle Scholar
  71. Schleip R (2003b) Fascial plasticity − a new neurobiological explanation, Part 2. J Body Mov Ther 7(2):104–116CrossRefGoogle Scholar
  72. Schleip R (2016) Mechanotransduktion: von der zellulären Ebene bis zum ganzen Körper. Osteopathische Medizin 3:16–21CrossRefGoogle Scholar
  73. Schleip R, Findley TW, Chaltow L, Huijing PA (Hrsg) (2014) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, MünchenGoogle Scholar
  74. Schuenke MD, Vleeming A, Van Hoof T, Willard FH (2012) A description of the lumbar interfascial triangel and its relation with the lateral raphe: anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J Anat 221:568–576PubMedCentralCrossRefPubMedGoogle Scholar
  75. Seminowicz DA, Moayedi M (2017) The dorsolateral prefrontal cortex in acute and chronic pain. J Pain 18(9):1.027–1.035CrossRefGoogle Scholar
  76. Standley PR, Meltzer KR (2008) In vitro modeling of repetive motion strain and manual medicine treatments: potential roles for pro- and anti-inflammatory cytocines. J Body Mov Ther 12:201–203CrossRefGoogle Scholar
  77. Stanziu D, Menzies D (2007) The magnitude of adhesion-related problems. Color Dis 9(2):35–38CrossRefGoogle Scholar
  78. Stecco C, Pavan P, Pachera P, De Caro R et al (2014) Investigation of the mechanical properties of the human crural fascia and their possible clinical implications. Surg Radiol Anat 36:25–32CrossRefPubMedGoogle Scholar
  79. Stöckl D (2019) Osteopathische Aspekte von Interozeption und Emotion. Deutsche Zeitschrift für Osteopathie 17:25–31Google Scholar
  80. Stöckl D (2019a) Psycho-Neuro im PNEI-System. Postgraduate Osteopathiekurs, WienGoogle Scholar
  81. Stöckl D (2019b) Psycho-Neurologie – Das vegetative Nervensystem. Seminar, WienGoogle Scholar
  82. Sulaiman H, Gabella G, Davis C, Mutsaers SE et al (2000) Growth of nerve fibres into murine peritoneal adhesions. J Pathol 192(3):396–403CrossRefPubMedGoogle Scholar
  83. Swanson RL (2013) Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research – a review and analysis. J Am Osteopathic Assoc 113(1):34–52CrossRefGoogle Scholar
  84. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C et al (2002) Myofibroblasts and mechanoregulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363PubMedCentralCrossRefPubMedGoogle Scholar
  85. Tozzi P (2015) A unifying neuro-fasciagenic model of somatic dysfunction − underlying mechanism and treatment, Part I. J Body Mov Ther 19:310–326CrossRefGoogle Scholar
  86. Tozzi P, Bongiorno D, Vitturini C (2011) Fascial release effects on patients with non-specific cervical or lumbar pain. J Body Mov Ther 15(4):405–416CrossRefGoogle Scholar
  87. Tozzi P, Buongiorno D, Vitturini C (2012) Low back pain and kidney mobility: local osteopathic fascial manipulation decreases pain perception and improves renal mobility. J Body Mov Ther 16(3):381–391.  https://doi.org/10.1016/j.jbmt.2012.02.001CrossRefGoogle Scholar
  88. Tracey WD Jr (2017) Nociception. Curr Biol 27(4):R129–R133CrossRefPubMedGoogle Scholar
  89. Treede RD, Rief W, Barke A, Aziz Q et al (2015) A classification of chronic pain for ICD-11. Pain 156(6):1003–1007PubMedCentralPubMedGoogle Scholar
  90. Trepel M (2008) Neuroanatomie Struruktur und Funktion, 4. Aufl. Urban & Fischer, MünchenGoogle Scholar
  91. Valouchova P, Lewit K (2009) Surface electromyography of abdominal and back muscles in patients with active scars. J Body Mov Ther 13:262–267CrossRefGoogle Scholar
  92. Van Baal JOAM, Van de Vijver KK, Niewland R, Van Noorden CJF et al (2016) The histophysiology and pathophysiology of the peritoneum. Tissue Cell 49:95–105CrossRefPubMedGoogle Scholar
  93. Van der Kolk B (2016) Verkörperter Schrecken, 3. Aufl. G. P. Probst Verlag GmbH, Lichtenau/WestfalenGoogle Scholar
  94. Wang H-Q, Wei Y-Y, Wu Z-X, Luo Z-J (2009) Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskelet Disord 10:105PubMedCentralCrossRefPubMedGoogle Scholar
  95. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytosceleton. Science 216:1124–1127CrossRefGoogle Scholar
  96. Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Phys Cell Phys 282(3):C606–C616CrossRefGoogle Scholar
  97. Wasserman JB, Copeland M, Upp M, Abraham K (2019) Effect of soft tissue mobilization techniques on adhesion-related pain and function in the abdomen: a systematic review. J Body Mov Ther 23(2):262–269CrossRefGoogle Scholar
  98. William AC, Craig KD (2016) Updating the definition of pain. Pain 157:2420–2423CrossRefGoogle Scholar
  99. Wiseman DM, Trout JR, Diamond MP (1998) The rates of adhesion development and the effects of crystalloid solutions on adhesion development in pelvic surgery. Fertil Steril 70(4):702–711PubMedCentralCrossRefPubMedGoogle Scholar
  100. Wurn BF, Wurn LJ, King R et al (2004a) Treating female infertility and improving IVF pregnancy rates with a manual physical therapy technique. Medscape Gen Med 6(2):51Google Scholar
  101. Wurn LJ, Wurn BF, Roscow AS, King R et al (2004b) Increasing orgasm and decreasing dyspareunia by a manual physical therapy technique. Medscape Gen Med 6(4):47Google Scholar
  102. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210PubMedCentralCrossRefPubMedGoogle Scholar
  103. Xu X, Rivkind A, Pappo O, Pikarsky A et al (2002) Role of mast cells and myofibroblasts in human peritoneal adhesion formation. Ann Surg 236(5):593–601PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Michaela Liedler
    • 1
  1. 1.WienÖsterreich

Personalised recommendations