Advertisement

Behandlungsgrundlagen

  • Michaela Liedler
Chapter
  • 93 Downloads

Zusammenfassung

Narben, Verklebungen und Adhäsionen sind Begriffe, die häufig in einem ähnlichen Kontext verwendet werden. Besonders für die manuelle Therapie ist es jedoch von großer Bedeutung, diese Strukturen zu unterscheiden und zu erkennen, warum sich peritoneale Adhäsionen, fasziale Verklebungen und Narben überhaupt so massiv auf den Körper auswirken. Gerade peritoneale Adhäsionen bleiben oft unentdeckt. Was das für die Therapie bedeutet, und inwieweit es möglich ist, diese Strukturen auch nach jahrelangem Bestehen noch zu verändern, wird in diesem Kapitel behandelt. Ein kurzer Abriss über Anatomie, Physiologie, Pathophysiologie und Gleiteigenschaften des Gewebes soll die Voraussetzung dafür schaffen, den Fokus bei der Behandlung mit dem Liedler-Konzept im besten Verständnis adäquat setzen zu können.

Literatur

  1. Abu-Hijleh M, Dharap AS, Harris PF (2014) Fascia superficialis. In: von Schleip R, Findley TW, Chaltow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 15–18Google Scholar
  2. Arung W, Meurisse M, Detry O (2011) Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol 17(41):4545–4553PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asmussen PD, Söllner B (2010) Die Prinzipien der Wundheilung, Bd. Sonderausgabe. Kammerlander, EmbrachGoogle Scholar
  4. Atance J, Yost MJ, Carver W (2004) Influence of the extracellular matrix on the regulationof cardiac fibroblast behavior by mechanical stretch. J Cell Physiol 200:377–386PubMedCrossRefGoogle Scholar
  5. van Baal JOAM, Van de Vijver KK, Niewland R, Van Noorden CJF et al (2016) The histophysiology and pathophysiology of the peritoneum. Tissue Cell 49:​95–105Google Scholar
  6. Balestrini JL, Biliar KL (2006) Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J Biomech 39:2983–2990PubMedCrossRefGoogle Scholar
  7. Betrán AP, Merialdi M, Lauer JA et al (2007) Rates of caesarean section: analysis of global, regional and national estimates. Paediatr Perinat Epidemiol 21(2):​98–113Google Scholar
  8. Bordoni B, Zanier E (2014) Clinical and symptomatological reflections: the fascial system. J Multidiscip Healthc 7:401–411PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bouffard NA, Cutroneo K, Badger GJ et al (2008) Tissue stretch decreases soluble TGF-β1 and Type-1 procollagen in mouse subcutaneous connective tissue: evidence from ex vivo and in vivo models. J Cell Physiol 214(2):389–395PubMedPubMedCentralCrossRefGoogle Scholar
  10. Breul R (2014) Die tiefen Faszien im Hals- und vorderen Rumpfbereich. In: von Schleip R, Findley TW, Chaltow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 33–38Google Scholar
  11. ten Broek RPG, Issa Y, van Santbrink EJP et al (2013) Burden of adhesions in abdominal and pelvic surgery: systemic review and met-analysis. BMJ 347:f5588PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brokelman WJA, Lensvelt M, Borel Rinkes IHM, Klinkenbijl JHG et al (2011) Peritoneal changes due to laparoscopic surgery. Surg Endosc 25:1–9PubMedCrossRefGoogle Scholar
  13. Brüggmann D, Tschartchian G, Wallwiener M, Münstedt K et al (2010) Intra-abdominal adhesions definition, origin, significance in surgical practice, and treatment options. Dtsch Ärztebl int 107(44):769–775PubMedPubMedCentralGoogle Scholar
  14. Burridge K, Guilluy C (2016) Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 343:14–20PubMedCrossRefGoogle Scholar
  15. Cao TV, Hicks MR, Standley PR (2013) In vitro biomechanical stain regulation of fibroblast wound healing. J Am Osteopath Assoc 113(11):806–818PubMedCrossRefGoogle Scholar
  16. Cao TV, Hicks MR, Zein-Hammoud M et al (2014) Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72–84Google Scholar
  17. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR (2015) Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72–82Google Scholar
  18. Capella-Monsonís H, Kearns S, Kelly J (2019) Battling adhesions: from understanding to prevention. BMC Biomed Eng 1:5CrossRefGoogle Scholar
  19. Carano A, Siciliani G (1996) Effects of continuous and intermittend forces on human fibroblasts in vitro. Eur J Orthod 18(1):19–26PubMedCrossRefGoogle Scholar
  20. Chamorro Comesaña A, del Pilar Suarez Vicente M, Ferreira TD et al (2017) Effect of myofascial induction therapy on post-c-section scars, more than one and a half years old. Pilot study. J Bodyw Mov Ther 21:197–204PubMedCrossRefGoogle Scholar
  21. Cheatham ML (2009) abdominal compartment syndrome: pathophysiology and definitions. Scand J Trauma, Resusc Emerg Med 17(10).  https://doi.org/10.1186/1757-7241-17-10
  22. Chen CS, Mrksich M, Huang S, Whitesides GM et al (1997) Geometric control of cell life and death. Science 276:1425–1428PubMedCrossRefGoogle Scholar
  23. Cheong YC, Laird SM, Shelton JB et al (2001) Peritoneal healing and adhesion formation/reformation. Hum Reprod Update 7(6):556–566PubMedCrossRefGoogle Scholar
  24. Coccolini F, Ansaloni L, Manfredi R et al (2013) Peritoneal adhesion index (PAI): proposal of a score for the ‚ignored iceberg’ of medicine and surgery. World J Emerg Surg 8:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  25. Corona R, Verguts J, Schonman R (2011) Postoperative inflammation in the abdominal cavity increases adhesion formation in a laparoscopic mouse model. Fertil Steril 95(4):1224–1228PubMedCrossRefGoogle Scholar
  26. Correa-Gallegos D, Jiang D, Christ S, Ramesh P, Ye H, Wannemacher J, Gopal SK, et al (2019) proposal of a score for the urgerya score for themeNature.  https://doi.org/10.1038/s41586-019-1794-y
  27. Cowman MK, Schmidt TA, Raghavan P, Stecco A (2015) Viscoelastic properties of hyaluronan in physiological conditions. F1000Research 4(655).  https://doi.org/10.12688/f1000research.6885.1
  28. Darby IA, Skalli O, Gabbiani G (1990) A-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Investig 63(1):21–29PubMedGoogle Scholar
  29. Darby IA, Laverdet B, Bonté F (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301–311PubMedPubMedCentralGoogle Scholar
  30. Deutzmann R, Bruckner P (2014) Extrazelluläre Matrix − Struktur und Funktion. In: von Heinrich P, Müller M, Graeve L (Hrsg) Löffler/Petrides Biochemie und Pathochemie. Springer-Lehrbuch. Springer, Berlin/Heidelberg, S 931–935CrossRefGoogle Scholar
  31. Deyo RA, Weinstein JN (2001) Low back pain. N Engl J Med 344(5):363–370PubMedCrossRefGoogle Scholar
  32. DiZerega GS (2000) Peritoneum, peritoneal healing, and adhesion formation. Peritoneal surgery. Bd Peritoneal surgery. Springer, New York, S 3–37Google Scholar
  33. DiZerega GS, Campeau JD (2001) Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update 7:547–555PubMedPubMedCentralCrossRefGoogle Scholar
  34. DiZerega GS, Rogers KE (1992) The peritoneum, Bd 1. Springer, New York, S 1–23CrossRefGoogle Scholar
  35. Dodd JG, Good MM, Nguyen TL, Grigg AI et al (2006) In vitro biophysical strain model for understanding mechanisms of osteopathic manipulative treatment. J Am Osteopath Assoc 106(3):157–166PubMedGoogle Scholar
  36. Duron J-J (2007) Postoperative intraperitoneal adhesion pathophysiology. Assoc Coloproctology G B Irel 9(2):14–24Google Scholar
  37. Engler AJ, Shamik S, Lee Sweeney H, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  38. Fede C, Angelini A, Stern R, Macchi V et al (2018) Quantification of hyaluronan in human fasciae: variations with function and anatomical site. J Anat 233(4):​552–556.  https://doi.org/10.1111/joa.12866
  39. Fernández-de-las-Peñas C, Dommerholt J (2014) Myofascial trigger points: peripheral or central phenomenon? Curr Rheumatol Rep 16:395PubMedCrossRefGoogle Scholar
  40. Ferron FR, Pedregosa AT, Garcia MR, Mata AF et al (2011) Presion intraabdominal y toracica en pacientes criticos con sospecha de hipertension intraabdominal. Med Int 35(5):274–279Google Scholar
  41. Fourie WJ (2014) Operationen und Narbenbildung. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 308–315Google Scholar
  42. Fuller RB (1961) Tensegrity. Portfolio Art News 4:112–127Google Scholar
  43. Gabbiani G (2003) The myofibroblast in woud healing and fibrocontractive dieseases. J Pathol 200(4):​500–503Google Scholar
  44. Gardel ML, Sabass B, Li J, Danuser G, Schwartz US, Waterman CM (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183:999–1005PubMedPubMedCentralCrossRefGoogle Scholar
  45. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805PubMedCrossRefGoogle Scholar
  46. Ghahiry A, Rezaei F, Khouzani RK, Ashrafinia M (2012) Comparative analysis of long-term outcomes of Misgav-Ladach technique cesarean section and traditional cesarean section. J Obstet Gynaecol Res 38(10):1235–1239PubMedCrossRefGoogle Scholar
  47. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1.248–1.257Google Scholar
  48. Grinnell F (1994) Mini-review on the cellular mechanisms of disease. J Cell Biol 124:401–404Google Scholar
  49. Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13(5):264–269PubMedCrossRefGoogle Scholar
  50. Guimberteau JC (2014) Das subkutane und epitendinöse Gewebe des multimikrovakuolären Gleitsystems. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 106–108Google Scholar
  51. Guimberteau JC, Armstrong C (2016) Faszien Architektur des menschlichen Fasziengewebes, 1. Aufl. KVM − Der Medizinverlag, BerlinGoogle Scholar
  52. Guimberteau JC, Bakhach J, Panconi B, Rouzaud S (2007) A fresh look at vascularized flexor tendon transfers: concept, technical aspects and results. J Plast Reconstr Aesthet Surg 60(7):793–810PubMedCrossRefGoogle Scholar
  53. Guimberteau JC, Delage JP, Mcgrouther DA, Wong JKF (2010) The microvacuolar system: how connective tissue sliding works. J Hand Surg 35:614–622l. Abschn. 8CrossRefGoogle Scholar
  54. Hartmann C (2005) Das große Still-Kompendium, Bd 1, 2. Aufl. Jolandos, UnterwössenGoogle Scholar
  55. Healy JC, Reznek RH (1998) The peritoneum, mesenteries and omenta: normal anatomy and pathological processes. Eur Radiol 8:886–900PubMedCrossRefGoogle Scholar
  56. Helsmoortel J, Hirth T, Wührl P (2002) Lehrbuch der viszeralen Osteopathie Peritoneale Organe. GeorgThieme, StuttgartGoogle Scholar
  57. von Heymann W, Stecco C (2016) Fasziale Dysfunktionen. Man Med 54:303–306.  https://doi.org/10.1007/s00337-016-0172-1CrossRefGoogle Scholar
  58. Hinz B, Gabbiani G (2003a) Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90:993–1002PubMedCrossRefGoogle Scholar
  59. Hinz B, Gabbiani G (2003b) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14:538–546PubMedCrossRefGoogle Scholar
  60. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1009–1020PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hinz B, Phan SH, Thannickal VJ, Prunotto M et al (2012) Review recent developments in myofibroblast biology paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huijing PA (2014a) Kraftübertragung und Muskelmechanik. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 82–83Google Scholar
  63. Huijing PA (2014b) Myofasziale Kraftübertragung − Eine Einführung. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 84–88Google Scholar
  64. Huss S, Wentzel B (2015) Diaphragmen und die Zirkulation. Haug, StuttgartCrossRefGoogle Scholar
  65. Hynes RO (2009) Extracellular matrix:not just pretty fibrils. Science 326(5957):1216–1219PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ingber DE (1997) Integrins, tensegrity, and mechanotransduction. Gravit Space Res 10:2Google Scholar
  67. Ingber DE (1998) The architecture of life. Sci Am 278(1):48–57PubMedCrossRefGoogle Scholar
  68. Ingber DE (2003a) Mechanobiology and diseased of mechanotransduction. Ann Med 35:1–14CrossRefGoogle Scholar
  69. Ingber DE (2003b) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173PubMedCrossRefGoogle Scholar
  70. Ingber DE (2003c) Tensegrity II. How structural networks influence cellualr informaiton processing networks. J Cell Sci 116:1397–1408PubMedCrossRefGoogle Scholar
  71. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:815–827CrossRefGoogle Scholar
  72. Ingber DE (2008a) Tensegrity and mechanotransduction. J Bodyw Mov Ther 12:198–200PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ingber DE (2008b) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97​(2–3):163–179Google Scholar
  74. Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95:3470–3478PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kawabata M, Shima N, Nishizono H (2014) Regular change in spontaneous preparative behaviour on intra-abdominal pressure and breathing during dynamic lifting. Eur J Appl Physiol 114:2233–2239PubMedCrossRefGoogle Scholar
  76. Kjaer M, Langberg H, Bayer ML, Hansen M et al (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19:500–510PubMedCrossRefGoogle Scholar
  77. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR et al (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Science 90(10):3762–3773Google Scholar
  78. Kwei S, Stavrakis G, Masaya T, Judah Folkman M et al (2004) Early adaptive responses of the vascular wall during venous arterialization in mice. Am J Pathol 164(1):81–89PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lackner I (2017) The pathophysiology of postoperative peritoneal adhesions- osteopathy as a treatment option? Literaturstudie, DUK, KremsGoogle Scholar
  80. Lancerotto L, Stecco C, Macchi V, Porzionato A et al (2011) Layers of the abdominal wall: anatomical investigation of subcutaneaous tissue and superficial fascia. Surg Radiol Anat.  https://doi.org/10.1007/s00276-010-0772-8
  81. Langevin HM, Sherman KJ (2007) Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses 68:74–80PubMedCrossRefGoogle Scholar
  82. Langevin HM, Cornbrooks C, Taatjes DJ (2004) Fibroblast form a body-wide cellular network. Histochem Cell Biol 122:7–15PubMedCrossRefGoogle Scholar
  83. Langevin HM, Bouffard NA, Badger GJ, Iatridis JC, Howe AK (2005) Dynamic fibroblast cytoskeletal respose to subcutaneous tissue stretch ex vivo and in vivo. Am J Phys Cell Phys 288(C):747–756CrossRefGoogle Scholar
  84. Langevin HM, Stevens-Tuttle D, Fox JR, Badger GJ, Bouffard NA, Krag MH, Henry SM et al (2009) Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain. BMC Musculoskeletal Disord 10(1):151Google Scholar
  85. Langevin, HM, Fox JR, Koptiuch C, Badger GJ et al (2011) Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskeltal Disord 12(203):1–11Google Scholar
  86. Levin SM, Martin D-C (2012) Biotensegrity: the mechanics of fascia. Fascia e the tensional network of the human body. In: The Science and clinical applications in manual and movement therapy. Elsevier GmbH, Edinburgh, S 137–42Google Scholar
  87. Levin SM, Martin D-C (2014) Biotensegrität-die Faszienmechanik. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 101–105Google Scholar
  88. Liedler M (2017) Einfluss von postoperativen Adhäsionen nach Sektio auf chronischen Low Back Pain − eine Pilotstudie. Masterthese, DUK, KremsGoogle Scholar
  89. Liem T (2005) Kraniosakrale Osteopathie, 4. Aufl. Hippokrates, StuttgartGoogle Scholar
  90. Liem T, Vogt R (2014) Intrakranialle und intraspinale Membranstrukturen. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 42–48Google Scholar
  91. Lindig P (1922) Über die Entstehung, Bedeutung und Behandlung von Adhäsionen im Beckenbauchraum. Klin Wochenzeitschrift 1(22):421–423CrossRefGoogle Scholar
  92. Mage G, Wattiez A, Canis M, Pouly JL et al (2000) Classification of adhesions. In: von DiZerega GS (Hrsg) Peritoneal surgery. Springer, New York, S 221–228CrossRefGoogle Scholar
  93. Margetts PJ, Bonniaud P (2003) In-depth review basis mechanisms and clinical implications of peritoneal fibrosis. Perit Dial Int 23:530–541PubMedCrossRefGoogle Scholar
  94. Matteini P, Dei L, Carretti E, Volpi N et al (2009) Structural behavior of highly concentrated hyaluronan. Biomacromolecules 10:1516–1522PubMedCrossRefGoogle Scholar
  95. McCombe D, Brown T, Slavin J, Morrison WA (2001) The histochemical structure of the deep fascia and its structural response to surgery. Journal of Hand Surgery 26B(2):89–97CrossRefGoogle Scholar
  96. McNeilly M, Banes AJ, Benjamin M, Ralphs JR (1996) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189:593–600PubMedPubMedCentralGoogle Scholar
  97. Meert GF (2009) Das Becken aus osteopathischer Sicht, 3. Aufl. Urban & Fischer, MünchenGoogle Scholar
  98. Meert GF (2014) Strömungsdynamik im Fasziengewebe. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 131–134Google Scholar
  99. Melichar B, Freedman RS (2002) Immunology of the peritoneal cavity: relevance for host-tumor relation. Int J Gynecol Cancer 12:3–17PubMedCrossRefGoogle Scholar
  100. Menzies D, Ellis H (1990) Intestinal obstruction from adhesions − how big is the problem? Ann R Coll Surg Engl 72:60–63PubMedPubMedCentralGoogle Scholar
  101. Milanesi R, Aquino RC (2016) Intra-abdominal pressure: an integrative review. Einstein (Sao Paulo) 14(3):423–430CrossRefGoogle Scholar
  102. Molinas CR, Binda MM, Manavella GD, Koninckx PR (2010) Adhesion formation after laparoscopic surgery: what do we know about the role of the peritoneal environment? Facts Views Vis Obgyn 2(3):149–160PubMedPubMedCentralGoogle Scholar
  103. Muts R (2015) Behandlung der peritonealen Bewegungsflächen in Beziehung der abdominalen Organen. Masterclass Osteopathie gehalten auf der Osteopathische Behandlungskonzepte 12. Peritoneum, WienGoogle Scholar
  104. Myers T (2014) Kraftübertragung über Anatomische Zuglinien. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 96–100Google Scholar
  105. Niedergethmann M, Post S (2014) Appendektomie offen. http://www.webop.de/appendektomie-offen-12/. Zugegriffen am 29.03.2016
  106. Pados G, Venetis CA, Almaloglou K, Tarlatzis BC (2010) Prevention of intra-peritoneal adhesions in gynaecological surgery: theory and evidence. Reprod BioMed Online 21:290–303.  https://doi.org/10.1016/j.rbmo.2010.04.021CrossRefPubMedGoogle Scholar
  107. Paoletti S (2014) Zwerchfellartige Strukturen. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 49–53Google Scholar
  108. Park H, Hwang B, Kim Y (2015) The impact of the pelvis floor muscles in dynamic ventilation maneuvers. J PhysTherSci 27:3155–3157Google Scholar
  109. Passerieux E, Rossignol R, Letellier T, Delage JP (2007) Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle. J Struct Biol 159:19–28PubMedCrossRefGoogle Scholar
  110. Pavan GP, Stecco A, Stern R, Stecco C (2014) Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Rep 18(441):1–8Google Scholar
  111. Pischinger A (2010) Das System der Grundregulation. Neu herausgegeben von Heine H, 12. Aufl. Karl F. Haug, StuttgartGoogle Scholar
  112. Plotnikov SV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527PubMedCrossRefGoogle Scholar
  113. Purslow PP, Delage JP (2014) Allgemeine Anatomie der Muskelfaszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 4–8Google Scholar
  114. Raftery AT (1973) Regeneration of parietal and visceral peritoneum: a electron microscopical study. J Anat 115:375–392PubMedPubMedCentralGoogle Scholar
  115. Raftery AT (1979) Regeneration of peritoneum: a fibrinolytic study. J Anat 129(3):659–664PubMedPubMedCentralGoogle Scholar
  116. Richter P (2014) Myofasziale Ketten: Übersicht über die verschiedenen Modelle. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 89–95Google Scholar
  117. Rodríguez RM, del Río FG (2013) Mechanistic basis of manual therapy in myofascial injuries. Sonoelastographic evolution control. J Bodyw Mov Ther 17:221–234Google Scholar
  118. Rodrigues MA, Nahas FX, Gomes HC, Masako Ferreira L (2013) Ventilatory function and intra-abdominal pressure in patients who underwent abdominoplasty with plication of the external oblique aponeurosis. Aesthet Plast Surg 37(5):993–999CrossRefGoogle Scholar
  119. Roman M, Chaudhry H, Bukiet B, Stecco A et al (2013) Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J Am Osteopath Assoc 113(8):600–610PubMedCrossRefGoogle Scholar
  120. Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO (2016) Control of myofibroblast differentiationand function by cytoskeletal signaling. Biochem Mosc 81(13):1698–1708CrossRefGoogle Scholar
  121. Sandhouse (2011) Glossary of osteopathic terminology. American Association of Collegues of Osteopathic MedicineGoogle Scholar
  122. Schilder A, Hoheisel U, Magerl W, Benrath J et al (2014) Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain 155:222–231PubMedCrossRefGoogle Scholar
  123. Schleip R (2003a) Fascial plasticity − a new neurobiological explanation, part 1. J Bodyw Mov Ther 7(1):11–19CrossRefGoogle Scholar
  124. Schleip R (2003b) Fascial plasticity − a new neurobiological explanation, part 2. J Bodyw Mov Ther 7(2):104–116CrossRefGoogle Scholar
  125. Schleip R (2016) Mechanotransduktion: von der zellulären Ebene bis zum ganzen Körper. Osteopathische Medizin 3:16–21CrossRefGoogle Scholar
  126. Schleip R, Klingler W, Lehmann-Horn F (2005) Active fascial contractility: fascia may be able to contract in a smooth-like manner und thereby musculoskeletal dynamics. Med Hypotheses 65:273–277PubMedCrossRefGoogle Scholar
  127. Schleip R, Jäger H, Klingler W (2014) Die Faszie lebt: wie Faszientonus und -struktur von Zellen moduliert werden. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 115–120Google Scholar
  128. Schmitt VH (2016) Literaturdiskussion. In: von Schmitt VH (Hrsg) Die Biokompatibilität peritonealer Adhäsionsbarrieren. Springer Fachmedien Wiesbaden, WiesbadenCrossRefGoogle Scholar
  129. Schünke M, Schulte E, Schumacher U, Voll M, Wesker K (2015) Prometheus – Innere Organe, 4. Aufl., Innere Organe. Thieme, StuttgartGoogle Scholar
  130. Schünke M, Vleeming A, Van Hoof T, Willard FH (2012) A description of the lumbar interfascial triangel and its relation with the lateral raphe:anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J Anat 221:568–576CrossRefGoogle Scholar
  131. Schwarz US, Balaban NQ, Riveline D, Bershadsky A et al (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 38:1380–1394CrossRefGoogle Scholar
  132. Standley PR, Meltzer KR (2008) In vitro modeling of repetive motion strain and manual medicine treatments: potential roles for pro- and anti-inflammatory cytocines. J Bodyw Mov Ther 12:201–203PubMedPubMedCentralCrossRefGoogle Scholar
  133. Stecco A, Meneghini A, Stern R, Stecco C (2014) Ultrasonography in myofascial neck pain: randomized clinical trial for diagnosis and follow-up. Surg Radiol Anat 36:243–253PubMedCrossRefGoogle Scholar
  134. Stecco C, Pavan PG, Porzionato A, Macchi V et al (2009) Mechanics of crural fascia: from anatomy to sonstitutive modelling. Surg Radiol Anat 31:523–529.  https://doi.org/10.1007/s00276-009-0474-2CrossRefPubMedGoogle Scholar
  135. Stecco C, Stern R, Porzionato A, Macchi V, Masiero S et al (2011) Hyaluron within fascia in the etiology of myofascial pain. Surg Radiol Anat 33:891–896.  https://doi.org/10.1007/s00276-011-0876-9CrossRefPubMedGoogle Scholar
  136. Stecco C, Stecco A (2014) Die tiefe Faszie der unteren Extremität. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 23–26Google Scholar
  137. Stecco C, Fede C, Macchi V, Porzionato A et al (2018) The fasciacytes: a new cell devoted to fascial gliding regulation. Clin Anat.  https://doi.org/10.1002/ca.23072
  138. Stoltz J, Dumas D, Wang X, Payan E et al (2000) Influence of mechanical forces on cells and tissues. Biorheology 37:3–14PubMedGoogle Scholar
  139. Stout AL, Steege JF, Dodson WJ, Hughes CL (1991) Relationship of laparoscopic findings to self-report of pelvic pain. Am Obstet Gynecol 164(1):73–79CrossRefGoogle Scholar
  140. Struller F, Weinreich F-J, Horvath P, Kokkalis M-K, Beckert S et al (2017) Peritoneal innervation: embryology and functional anatomy. Pleura Peritoneum 2(4):153–161PubMedPubMedCentralCrossRefGoogle Scholar
  141. Swanson RL (2013) Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research – a review and analysis. J Am Osteopath Assoc 113(1):34–52PubMedCrossRefGoogle Scholar
  142. Temple-Wong MM, Ren S, Quach P, Hansen BC et al (2016) Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthr Res Ther 18(1):18Google Scholar
  143. Tesarz J, Hoheisel U, Wiedenhofer B, Mense S (2011) Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 194:302–308PubMedCrossRefGoogle Scholar
  144. Threlkeld AJ (1992) The effects of manual therapy on connective tissue. J Am Phys Ther Assoc 72:893–902Google Scholar
  145. Tomasek JJ, Haaksma CJ, Eddy RJ, Vaughan MB (1992) Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat Rec 232:359–368PubMedCrossRefGoogle Scholar
  146. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C et al (2002) Myofibroblasts and mechanoregulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tozzi P (2015a) A unifying neuro-fasciagenic model of somatic dysfunction − Underlying mechanism and treatment, Part I. J Bodyw Mov Ther 19:310–326PubMedCrossRefGoogle Scholar
  148. Tozzi P (2015b) A unifying neuro-fasciagenic model of somatic dysfunction − Underlying mechanism and treatment, Part II. J Bodyw Mov Ther 19:526–543PubMedCrossRefGoogle Scholar
  149. Tozzi P, Bongiorno D, Vitturini C (2011) Fascial release effects on patients with non-specific cervical or lumbar pain. J Bodyw Mov Ther 15(4):405–416PubMedCrossRefGoogle Scholar
  150. Tozzi P, Bongiorno D, Vitturini C (2012) Low back pain and kidney mobility: local osteopathic fascial manipulation decreases pain perception and improves renal mobility. J Bodyw Mov Ther 16(3):381–391.  https://doi.org/10.1016/j.jbmt.2012.02.001CrossRefPubMedGoogle Scholar
  151. Trindade VL, Martins PA, Santos S, Parente MP et al (2012) Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J Biomech 45:199–201PubMedCrossRefGoogle Scholar
  152. Van den Berg F (2014a) Die Extrazellulärmatrix. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 121–125Google Scholar
  153. Van den Berg F (2014b) Die Physiologie der Faszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 110–114Google Scholar
  154. Van der Wal J (2009) The architecture of the connective tissue in the musculoskeletal system – an often overlooked functional parameter as to propioception in the locomotor apparatus. Int J Thera Massage Bodyw 2(4):9–23Google Scholar
  155. Wang N, Tolic-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616Google Scholar
  156. Wang H-Q, Wei Y-Y, Wu Z-X, Luo Z-J (2009) Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskeltal Disorders 10:105CrossRefGoogle Scholar
  157. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytosceleton. Science 216:1124–1127CrossRefGoogle Scholar
  158. Weibel M-A, Majno G (1973) Peritoneal adhesions and their relation to abdominal surgery: a postmortem study. Am J Surg 126(3):345–353PubMedCrossRefGoogle Scholar
  159. Wight TN, Potter-Perigo S (2011) The extracellular matrix: an active or passive player in fibrosis? Am J Physiol Gastrointest Liver Physiol 301(6):G950–G955PubMedPubMedCentralCrossRefGoogle Scholar
  160. Willard FH (2014a) Die somatische Faszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 9–14Google Scholar
  161. Willard FH (2014b) Die viszerale Faszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 39–41Google Scholar
  162. Wiseman DM, Trout JR, Diamond MP (1998) The rates of adhesion development and the effects of crystalloid solutions on adhesion development in pelvic surgery. Fertil Steril 70(4):702–711PubMedCrossRefGoogle Scholar
  163. Wurn BF, Wurn LJ, King R, Heuer MA et al (2004a) Treating female infertility and improving ivf pregnancy rates with a manual physical therapy technique. Medscape Gen Med 6(2):51Google Scholar
  164. Wurn LJ, Wurn BF, Roscow AS, King R et al (2004b) Increasing orgasm and decreasing dyspareunia by a manual physical therapy technique. Medscape Gen Med 6(4):47Google Scholar
  165. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210PubMedPubMedCentralCrossRefGoogle Scholar
  166. Xu X, Rivkind A, Pappo O, Pikarsky A, Levi-Schaffer F (2002) Role of mast cells and myofibroblasts in human peritoneal adhesion formation. Ann Surg 236(5):593–601PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Michaela Liedler
    • 1
  1. 1.WienÖsterreich

Personalised recommendations