Skip to main content

Methodische Beispiele aus der aktuellen Forschung

  • Chapter
  • First Online:
Methoden der Verhaltensbiologie
  • 2844 Accesses

Zusammenfassung

Das Verhalten von Tieren ist außerordentlich variabel, und zwar sowohl zwischen Arten, zwischen Individuen derselben Art als auch situationsabhängig innerhalb von Individuen. Diese hierarchische Organisation in der Variation von Verhalten lässt sich mit statistischen Verfahren analysieren und verstehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Allegue H, Araya-Ajoy YG, Dingemanse NJ, Dochtermann NA, Garamszegi LZ, Nakagawa S et al (2017) Statistical Quantification of Individual Differences (SQuID): an educational and statistical tool for understanding multilevel phenotypic data in linear mixed models. Methods Ecol Evol 8:257–267

    Article  Google Scholar 

  • Araya-Ajoy YG, Dingemanse NJ (2017) Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J Anim Ecol 86:227–238

    Article  PubMed  Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE (2016) Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad Sci 113:201505913

    Article  CAS  Google Scholar 

  • Blumstein DT, Fernández-Juricic E (2010) A primer of conservation behavior. Sinauer Associates, Sunderland

    Google Scholar 

  • Bodden C, von Kortzfleisch V, Karwinkel F, Kaiser S, Sachser N, Richter SH (2019) Heterogenising study samples across testing time improves reproducibility of behavioural data. Sci Rep 9:8247

    Google Scholar 

  • Boorman E, Parker GA (1976) Sperm (ejaculate) competition in Drosophila melanogaster, and reproductive value of females to males in relation to female age and mating status. Ecol Entomol 1:145–155

    Article  Google Scholar 

  • Breedveld MC, Folkertsma R, Eccard JA (2019) Rodent mothers increase vigilance behaviour when facing infanticide risk. Sci Rep 9:12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchholz R (2007) Behavioural biology: an effective and relevant conservation tool. Trends Ecol Evol 22:401–407

    Article  PubMed  Google Scholar 

  • Buirski P, Plutchik R, Kellerman H (1978) Sex differences, dominance, and personality in the chimpanzee. Anim Behav 26:123–129

    Article  CAS  PubMed  Google Scholar 

  • Candolin U, Wong BBM (2012) Behavioral responses to a changing world, 1. Aufl. Oxford University Press, Oxford

    Book  Google Scholar 

  • Caspers BA, Krause ET, Hendrix R, Kopp M, Rupp O, Rosentreter K, Steinfartz S (2014) The more the better – polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders (Salamandra salamandra). Mol Ecol 23:239–250

    Article  PubMed  Google Scholar 

  • Caspers BA, Steinfartz S, Krause ET (2015) Larval deposition behaviour and maternal investment of females reflect differential habitat adaptation in a genetically diverging salamander population. Behav Ecol Sociobiol 69:407–413

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    Article  PubMed  PubMed Central  Google Scholar 

  • Corral-López A, Bloch N, Kotrschal A, van der Bijl W, Buechel S, Mank JE, Kolm N (2017) Female brain size affects the assessment of male attractiveness during mate choice. Sci Adv 3:e1601990

    Article  PubMed  PubMed Central  Google Scholar 

  • Corral-López A, Kotrschal A, Kolm N (2018) Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. J Exp Biol 221:jeb175240

    Article  PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  CAS  Google Scholar 

  • Dall SRX, Bell AM, Bolnick DI, Ratnieks FLW (2012) An evolutionary ecology of individual differences. Ecol Lett 15:1189–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • de Villemereuil P, Morrissey M, Nakagawa S, Schielzeth H (2018) Fixed effect variance and the estimation of repeatabilities and heritabilities: issues and solutions. J Evol Biol 31:621–632

    Article  PubMed  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ, van Oers K, van Noordwijk AJ (2002) Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim Behav 64:929–938

    Article  Google Scholar 

  • Drent PJ, van Oers K, van Noordwijk AJ (2003) Realized heritability of personalities in the great tit (Parus major). Proc R Soc Lond Ser B 270:45–51

    Article  Google Scholar 

  • Fleischer T, Gampe J, Scheuerlein A, Kerth G (2017) Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci Rep 7:7370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann D, Baumgartner IO, Erasmy M, Gries N, Melber M, Leinert V, Parchem M, Reuter M, Schaer P, Stauffer S, Wagner I, Kerth G (2013) Female Bechstein’s bats adjust their group-decisions about communal roosts to the level of conflict of interests. Curr Biol 23:1–5

    Article  CAS  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gosling SD (1996) Personality categorization of humans and animals. Int J Psychol 31:3521

    Google Scholar 

  • Gross L (2005) Why not the best? How science failed the Florida panther. PLoS Biol 3:e333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris S, Cresswell WJ, Forde PG, Trewhella WJ, Woollard T, Wray S (1990) Home-range analysis using radio-tracking data – a review of problems and techniques particularly as applied to the study of mammals. Mammal Rev 20:97–123

    Article  Google Scholar 

  • Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behaviour in an adaptively diverging salamander population. Mol Ecol 26:6400–6413

    Article  PubMed  Google Scholar 

  • Herborn KA, Macleod R, Miles WTS, Schofield ANB, Alexander L, Arnold KE (2010) Personality in captivity reflects personality in the wild. Anim Behav 79:835–843

    Article  Google Scholar 

  • Hoffmann J, Schirmer A, Eccard JA (2019) Light pollution affects space use and interaction of two small mammal species irrespective of personality. BMC Ecol 19:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Mills Flemming JE, Whoriskey FG (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642

    Article  CAS  PubMed  Google Scholar 

  • John OP, Robins RW, Pervin LA (2010) Handbook of personality: theory and research. Guilford Press, New York

    Google Scholar 

  • Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478

    Article  CAS  PubMed  Google Scholar 

  • Kerth G, König B (1996) Transponder and an infrared-videocamera as methods in a fieldstudy on the social behaviour of Bechstein’s bats (Myotis bechsteinii). Myotis 34:27–34

    Google Scholar 

  • Kerth G, Reckardt K (2003) Information transfer about roosts in female Bechstein’s bats. Proc R Soc Lond B 270:511–515

    Article  Google Scholar 

  • Kerth G, van Schaik J (2012) Causes and consequences of living in closed societies: lessons from a long-term socio-genetic study on Bechstein’s bats. Mol Ecol 21:633–646

    Article  CAS  PubMed  Google Scholar 

  • Kerth G, Safi K, König B (2002) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52:203–210

    Article  Google Scholar 

  • Kerth G, Ebert C, Schmidtke C (2006) Group decision-making in fission-fusion societies: evidence from two field experiments in Bechstein’s bats. Proc R Soc Lond B 273:2785–2790

    Article  Google Scholar 

  • Kerth G, Perony N, Schweitzer F (2011) Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc R Soc B 278:2761–2767

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerth G, Fleischmann D, van Schaik J, Melber M (2013) Vom Verhalten über die Genetik zum Naturschutz: 20 Jahre Forschung an der Bechsteinfledermaus. In: Dietz M (Hrsg) Populationsökologie und Habitatansprüche der Bechsteinfledermaus Myotis bechsteinii. Beiträge zur Fachtagung in der Trinkkuranlage Bad Nauheim, 25.–26.02.2011. Zarbock GmbH & Co. KG, Frankfurt a. M.

    Google Scholar 

  • Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462

    Article  Google Scholar 

  • Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S, Maklakov AA, Kolm N (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr Biol 23:168–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Corral-López A, Amcoff M, Kolm N (2014) A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behav Ecol 26:527–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Buechel SD, Zala SM, Corral-López A, Penn DJ, Kolm N (2015a) Brain size affects female but not male survival under predation threat. Ecol Lett 18:646–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Corral-López A, Szidat S, Kolm N (2015b) The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth. Evolution 69:3013–3020

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Kolm N, Penn DJ (2016) Selection for brain size impairs innate, but not adaptive immune responses. Proc R Soc Lond B 283:20152857

    Article  CAS  Google Scholar 

  • Kotrschal A, Corral-López A, Kolm N (2019) Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol Let 15:20190137

    Article  Google Scholar 

  • Kowalski GJ, Grimm V, Herde A, Guenther A, Eccard JA (2019) Does animal personality affect movement in habitat corridors? Experiments with common voles (Microtus arvalis) using different corridor widths. Animals 9(6):291

    Article  PubMed Central  Google Scholar 

  • Lee JJ, McGue M, Iacono WG, Michael AM, Chabris CF (2019) The causal influence of brain size on human intelligence: evidence from within-family phenotypic associations and GWAS modeling. Intelligence 75:48–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Liefting M, Hoedjes KM, Lann CL, Smid HM, Ellers J (2018) Selection for associative learning of colour stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution 72:1449–1459

    Article  PubMed Central  Google Scholar 

  • MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM et al (2014) The evolution of self-control. Proc Natl Acad Sci 111:E2140–E2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magris M, Wignall AE, Herberstein ME (2015) The sterile male technique: irradiation negatively affects male fertility but not male courtship. J Insect Physiol 75:85–90

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Nessler SH, Uhl G, Schneider JM (2007) Genital damage in the orb-web spider Argiope bruennichi (Araneae: Araneidae) increases paternity success. Behav Ecol 18:174–181

    Article  Google Scholar 

  • Niemelä PT, Dingemanse NJ (2018) On the usage of single measurements in behavioural ecology research on individual differences. Anim Behav 145:99–105

    Article  Google Scholar 

  • Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567

    Google Scholar 

  • Parker GA (1984) Sperm competition and the evolution of animal mating strategies. In: Smith RL (Hrsg) Sperm competition and the evolution of animal mating systems. Academic Press, London, S 2–60

    Google Scholar 

  • Petelle MB, Martin JG, Blumstein DT (2015) Heritability and genetic correlations of personality traits in a wild population of yellow-bellied marmots (Marmota flaviventris). J Evol Biol 28:1840–1848

    Article  CAS  PubMed  Google Scholar 

  • Primack RB (2010) Essentials of conservation biology. Sinauer, Sunderland

    Google Scholar 

  • Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318

    Article  PubMed  Google Scholar 

  • Reusch C, Gampe J, Scheuerlein A, Meier F, Grosche L, Kerth K (2019) Differences in seasonal survival suggest species-specific reactions to climate change in two sypatric bat species. Ecol Evol 9(14):7957–7965 (im Druck)

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter SH (2017) Systematic heterogenization for better reproducibility in animal experimentation. Lab Anim 46:343–349

    Article  Google Scholar 

  • Richter SH (2018) Never replicate a successful experiment – Gedanken über Unschärfe im Tierversuch. In: Freitag S, Geierhos M, Asmani R, Haug JI (Hrsg) Unschärfe – der Umgang mit fehlender Eindeutigkeit. Erschienen in der Reihe: Nordrhein-Westfälische Akademie der Wissenschaften und der Künste – Junges Kolleg, Ferdinand Schöningh Verlag, Paderborn, S. 93–110

    Google Scholar 

  • Richter SH, Garner JP, Würbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261

    Article  CAS  PubMed  Google Scholar 

  • Richter SH, Auer C, Kunert J, Garner JP, Würbel H (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168

    Article  CAS  PubMed  Google Scholar 

  • Rushton JP (1999) Brain size and cognitive ability: a review with new evidence. Am J Phys Anthropol 108: 237–238

    Google Scholar 

  • Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Methods Ecol Evol 4:14–24

    Article  Google Scholar 

  • Schirmer A, Herde A, Eccard JA, Dammhahn M (2019) Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche spezialisation. Oecologia. https://doi.org/10.1007/s00442-019-04365-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider JM, Lesmono K (2009) Courtship raises male fertilization success through post-mating sexual selection in a spider. Proc R Soc B 276:3105–3111

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider JM, Gilberg S, Fromhage L, Uhl G (2006) Sexual conflict over copulation duration in a sexually cannibalistic spider. Anim Behav 71:781–788

    Article  Google Scholar 

  • Snijders L, van Rooij EP, Burt JM, Hinde CA, van Oers K, Naguib M (2014) Social networking in territorial great tits: slow explorers have the least central social network positions. Anim Behav 98:95–102

    Article  Google Scholar 

  • Snijders L, Naguib M, van Oers K (2017) Dominance rank and boldness predict social attraction in great tits. Behav Ecol 28:398–406

    Google Scholar 

  • Steinfartz S, Weitere M, Tautz D (2007) Tracing the first step to speciation – ecological and genetic differentiation of a salamander population in a small forest. Mol Ecol 16:4550–4561

    Article  CAS  PubMed  Google Scholar 

  • Stockley P (1997) Sexual conflict resulting from adaptations to sperm competition. Trends Ecol Evol 12:154–159

    Article  CAS  PubMed  Google Scholar 

  • Stumpf M, Meier F, Grosche L, Halczok TK, van Schaik J, Kerth G (2017) How do young bats find suitable swarming and hibernation sites? Assessing the plausibility of the maternal guidance hypothesis using genetic maternity assignment for two European bat species. Acta Chiropterologica 19:319–327

    Article  Google Scholar 

  • Szorkovszky A, Kotrschal A, Herbert-Read JE, Buechel SD, Romenskyy M, Rosén E, van der Bijl W, Pelckmans K, Kolm N, Sumpter DJ (2018) Assortative interactions revealed by sorting of animal groups. Anim Behav 142:165–179

    Article  Google Scholar 

  • Ullmann W, Fischer C, Kramer-Schadt S, Pirhofer-Walzl K, Eccard JA, Wevers P, Hardert A, Sliwinski K, Blaum N (2019) The secret life of wild animals revealed by accelerometer data: how landscape diversity and seasonality influence the behaviour of European hares. Manuskript

    Google Scholar 

  • van de Pol MV, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–758

    Article  Google Scholar 

  • van Oers K, Naguib M (2013) Avian personality. In: Carere C, Maestripieri D (Hrsg) Animal personalities: behavior, physiology, and evolution. The University of Chicago Press, Chicago, S 66–95

    Chapter  Google Scholar 

  • Voelkl B, Vogt L, Sena ES, Würbel H (2018) Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol 16:e2003693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DS, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. Trends Ecol Evol 9:442–446

    Article  Google Scholar 

  • Würbel H (2000) Behaviour and the standardization fallacy. Nat Genet 26:263

    Article  PubMed  Google Scholar 

  • Zeus V, Puechmaille S, Kerth G (2017) Con- and heterospecific social groups affect each other’s resource use: a study on roost sharing among bat colonies. Anim Behav 123:329–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Naguib .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naguib, M., Krause, E. (2020). Methodische Beispiele aus der aktuellen Forschung. In: Methoden der Verhaltensbiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60415-1_8

Download citation

Publish with us

Policies and ethics