Skip to main content

Black Holes Across Cosmic History: A Journey Through 13.8 Billion Years

  • Chapter
  • First Online:
Book cover Black Hole Formation and Growth

Part of the book series: Saas-Fee Advanced Course ((SAASFEE,volume 48))

Abstract

Massive black holes are fundamental constituents of our cosmos, from the Big Bang to today. Understanding their formation at cosmic dawn, their growth, and the emergence of the first, rare quasars in the early Universe remains one of our greatest theoretical and observational challenges. Hydrodynamic cosmological simulations self-consistently combine the processes of structure formation at cosmological scales with the physics of smaller, galaxy scales. They capture our most realistic understanding of massive black holes and their connection to galaxy formation and have become the primary avenue for theoretical research in this field. The space-based gravitational wave telescope LISA will open up new investigations into the dynamical processes involving massive black holes. Multi-messenger astrophysics brings new exciting prospects for tracing the origin, growth and merger history of massive black holes across cosmic ages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carr, B., Kühnel, F., Sandstad, M.: Primordial black holes as dark matter. Phys. Rev. D 94, 083504 (2016). https://link.aps.org/doi/10.1103/PhysRevD.94.083504

  2. Chapline, G.F.: Cosmological effects of primordial black holes. Nature 253, 251–252 (1975)

    Article  ADS  Google Scholar 

  3. Garcia-Bellido, J., Linde, A., Wands, D.: Density perturbations and black hole formation in hybrid ination. Phys. Rev. D 54, 6040–6058 (1996). arXiv:astro-ph/9605094 [astro-ph]

  4. Garcia-Bellido, J., Clesse, S.: Black holes from the beginning of time. Sci. Am. 317, 38–43 (2017)

    Article  ADS  Google Scholar 

  5. Carr, B.J., Rees, M.J.: How large were the first pregalactic objects? MNRAS 206, 315–325 (1984)

    Article  ADS  Google Scholar 

  6. Bird, S., et al.: Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2006). arXiv:1603.00464 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Crawford, M., Schramm, D.N.: Spontaneous generation of density perturbations in the early Universe. Nature 298, 538–540 (1982)

    Article  ADS  Google Scholar 

  9. Hawking, S.W.: Black holes from cosmic strings. Phys. Lett. B 231, 237–239 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. Polnarev, A., Zembowicz, R.: Formation of primordial black holes by cosmic strings. Phys. Rev. D 43, 1106–1109 (1991)

    Article  ADS  Google Scholar 

  11. Clesse, S., Garcia-Bellido, J.: Massive primordial black holes from hybrid ination as dark matter and the seeds of galaxies. Phys. Rev. D 92, 023524 (2015). arXiv:1501.07565 [astro-ph.CO]

    Article  ADS  Google Scholar 

  12. Cirelli, M.: Dark matter indirect searches: charged cosmic rays. J. Phys. Conf. Ser. 718, 022005 (2016)

    Article  Google Scholar 

  13. Cirelli, M., Taoso, M.: Updated galactic radio constraints on dark matter. J. Cosmol. Astro-Part. Phys. 041, (2016). arXiv:1604.06267 [hep-ph]

  14. Ali-Haimoud, Y., Kovetz, E.D., Kamionkowski, M.: Merger rate of primordial black-hole binaries. Phys. Rev. D 96, 123523 (2017). arXiv:1709.06576 [astro-ph.CO]

    Article  ADS  Google Scholar 

  15. Kovetz, E.D.: Probing primordial black hole dark matter with gravitational waves. Phys. Rev. Lett. 119, 131301 (2017). arXiv:1705.09182 [astro-ph.CO]

    Article  ADS  Google Scholar 

  16. Regan, J.A., Haehnelt, M.G.: Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures \(>\)10000K. MNRAS 396, 343–353 (2009). arXiv:0810.2802

  17. Abel, T., Bryan, G.L., Norman, M.L.: The formation of the first star in the universe. Science 295, 93–98 (2002)

    Article  ADS  Google Scholar 

  18. Johnson, J.L., Bromm, V.: The aftermath of the first stars: massive black holes. MNRAS 374, 1557–1568 (2007)

    Article  ADS  Google Scholar 

  19. Madau, P., Rees, M.J.: Massive black holes as population III remnants. ApJ 551, L27–L30 (2001). arXiv:astro-ph/0101223

    Article  ADS  Google Scholar 

  20. Heger, A., Woosley, S.E., Fryer, C.L., Langer, N.: Massive Star Evolution Through the Ages in From Twilight to Highlight: The Physics of Supernovae, Hillebrandt, W., Leibundgut, B. (eds.), vol. 3 (2003). arXiv:astro-ph/0211062

  21. Begelman, M.C., Volonteri, M., Rees, M.J.: Formation of supermassive black holes by direct collapse in pre-galactic haloes. MNRAS 370, 289–298 (2006). arXiv:astro-ph/0602363

    Article  ADS  Google Scholar 

  22. Ferrara, A., Salvadori, S., Yue, B., Schleicher, D.: Initial mass function of intermediate-mass black hole seeds. MNRAS 443, 2410–2425 (2014). arXiv:1406.6685

    Article  ADS  Google Scholar 

  23. Latif, M.A., Schleicher, D.R.G., Schmidt, W., Niemeyer, J.: Black hole formation in the early Universe. MNRAS 433, 1607–1618 (2013). arXiv: 1304.0962 [astro-ph.CO]

  24. Lodato, G., Natarajan, P.: Supermassive black hole formation during the assembly of pre-galactic discs. MNRAS 371, 1813–1823 (2006). arXiv:astroph/0606159

  25. Rees, M.J.: Accretion and the quasar phenomenon. Phys. Sci. 17, 193–200 (1978)

    Article  ADS  Google Scholar 

  26. Clark, P.C., et al.: The formation and fragmentation of disks around primordial protostars. Science 331, 1040 (2011). arXiv:1101.5284 [astro-ph.CO]

    Article  ADS  Google Scholar 

  27. Schneider, R., Omukai, K., Inoue, A.K., Ferrara, A.: Fragmentation of star-forming clouds enriched with the first dust. MNRAS 369, 1437–1444 (2006). arXiv:astro-ph/0603766

    Article  ADS  Google Scholar 

  28. Begelman, M.C., Rees, M.J.: The fate of dense stellar systems. MNRAS 185, 847–860 (1978)

    Article  ADS  Google Scholar 

  29. Devecchi, B., Volonteri, M.: Formation of the first nuclear clusters and massive black holes at high redshift. ApJ 694, 302–313 (2009). arXiv:0810.1057

    Article  ADS  Google Scholar 

  30. Yajima, H., Khochfar, S.: The role of stellar relaxation in the formation and evolution of the first massive black holes. MNRAS 457, 2423–2432 (2016). arXiv:1507.06701

  31. Volonteri, M., Bellovary, J.: Black holes in the early Universe. Rep. Prog. Phys. 75, 124901 (2012). arXiv:1209.2243

    Article  ADS  Google Scholar 

  32. Turk, M.J., Abel, T., O’Shea, B.: The formation of population III binaries from cosmological initial conditions. Science 325, 601 (2009). arXiv:0907.2919 [astro-ph.CO]

    Article  ADS  Google Scholar 

  33. Trenti, M., Stiavelli, M., Michael Shull, J.: Metal-free gas supply at the edge of reionization: late-epoch population III star formation. ApJ 700, 1672–1679 (2009). arXiv:0905.4504 [astro-ph.CO]

    Article  ADS  Google Scholar 

  34. Greif, T.H., et al.: Formation and evolution of primordial protostellar systems. MNRAS 424, 399–415 (2012)

    Article  ADS  Google Scholar 

  35. Hirano, S., et al.: One hundred first stars: protostellar evolution and the final masses. ApJ 781, 60 (2014). arXiv:1308.4456 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. Latif, M.A., Schleicher, D.R.G., Spaans, M.: The implications of dust for high-redshift protogalaxies and the formation of binary disks. A & A 540, A101 (2012). arXiv:1110.4256 [astro-ph.CO]

    Article  ADS  Google Scholar 

  37. Regan, J.A., et al.: Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nat. Astron. 1, 0075 (2017). arXiv:1703.03805 [astro-ph.GA]

    Article  Google Scholar 

  38. Wise, J.H., et al. Formation of massive black holes in rapidly growing pregalactic gas clouds. Nature 566, 85–88 (2019). arXiv:1901.07563

  39. Hirano, S., Hosokawa, T., Yoshida, N., Kuiper, R.: Supersonic gas Streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017). arXiv:1709.09863 [astro-ph.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Chon, S., Hosokawa, T., Yoshida, N.: Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems. MNRAS 475, 4104–4121 (2018). arXiv:1711.05262 [astro-ph.GA]

    Article  ADS  Google Scholar 

  41. Mayer, L., Kazantzidis, S., Escala, A., Callegari, S.: Direct formation of supermassive black holes via multi-scale gas inows in galaxy mergers. Nature 466, 1082–1084 (2010)

    Article  ADS  Google Scholar 

  42. Mayer, L., Bonoli, S.: The route to massive black hole formation via merger-driven direct collapse: a review. Rep. Progr. Phys. 82, 29 (2019). arXiv:1803.06391

  43. Mayer, L., et al.: Direct formation of supermassive black holes in metalenriched gas at the heart of high-redshift galaxy mergers. ApJ 466, 51–65 (2015). arXiv:1411.5683

    Article  ADS  Google Scholar 

  44. Woods, T., et al.: Titans of the Early Universe: The Prato Statement on the Origin of the First Supermassive Black Holes. Publications of the Astronomical Society of Australia, vol. 38 (2019). arXiv:eprintarXiv:1810.12310

  45. Ba nados, E., et al.: An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018). arXiv:1712.01860

  46. Fan, X., et al.: The first luminous quasars and their host galaxies (2019). arXiv e-prints. arXiv:1903.04078

  47. Fan, X., et al.: A survey of \(z > 5.7\) quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars. AJ 131, 1203–1209 (2006). arXiv:astro-ph/0512080

  48. Spergel, D.N., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. ApJS 170, 377–408 (2007). arXiv:astro-ph/0603449

    Article  ADS  Google Scholar 

  49. Crain, R.A., et al.: The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. MNRAS 450, 1937–1961 (2015). arXiv:1501.01311

  50. Di Matteo, T., Croft, R.A.C., Feng, Y., Waters, D., Wilkins, S.: The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier. MNRAS 467, 4243–4251 (2017). arXiv:1606.08871

  51. Khandai, N., et al.: The Massive black-II simulation: the evolution of haloes and galaxies to z 0. MNRAS 450, 1349–1374 (2015). arXiv:1402.0888

    Article  ADS  Google Scholar 

  52. Vogelsberger, M., et al.: Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. MNRAS 444, 1518–1547 (2014). arXiv:1405.2921

    Article  ADS  Google Scholar 

  53. Di Matteo, T., et al.: Cold flows and the first quasars. ApJ 745, L29 (2012). arXiv:1107.1253 [astro-ph.CO]

    Article  ADS  Google Scholar 

  54. Springel, V.: The cosmological simulation code GADGET-2. MNRAS 364, 1105–1134 (2005)

    Article  ADS  Google Scholar 

  55. Feng, Y., et al.: The formation of milky way-mass disk galaxies in the first 500 million years of a cold dark matter universe. ApJ 808, L17 (2015). arXiv:1504.06618

  56. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986)

    Article  ADS  Google Scholar 

  57. Hopkins, P.F., et al.: The evolution in the faint-end slope of the quasar luminosity function. ApJ 639, 700–709 (2006). arXiv:astro-ph/0508299

    Article  ADS  Google Scholar 

  58. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. MNRAS 401, 791–851 (2010). arXiv:0901.4107 [astro-ph.CO]

    Article  ADS  Google Scholar 

  59. Bauer, A., Springel, V.: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations. MNRAS 3102, (2012). arXiv:1109.4413 [astro-ph.CO]

  60. Genel, S., et al.: Following the ow: tracer particles in astrophysical uid simulations. MNRAS 435, 1426–1442 (2013). arXiv:1305.2195 [astro-ph.IM]

    Article  ADS  Google Scholar 

  61. Nelson, D., et al.: Moving mesh cosmology: tracing cosmological gas accretion. MNRAS 429, 3353–3370 (2013). arXiv:1301.6753 [astro-ph.CO]

    Article  ADS  Google Scholar 

  62. Sijacki, D., Vogelsberger, M., Kereš, D., Springel, V., Hernquist, L.: Moving mesh cosmology: the hydrodynamics of galaxy formation. MNRAS 424, 2999–3027 (2012). arXiv:1109.3468 [astro-ph.CO]

    Article  ADS  Google Scholar 

  63. Torrey, P., Vogelsberger, M., Sijacki, D., Springel, V., Hernquist, L.: Moving-mesh cosmology: properties of gas discs. MNRAS 427, 2224–2238 (2012). arXiv:1110.5635 [astro-ph.CO]

    Article  ADS  Google Scholar 

  64. Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V., Hernquist, L.: Moving mesh cosmology: numerical techniques and global statistics. MNRAS 425, 3024–3057 (2012). arXiv:1109.1281 [astro-ph.CO]

    Article  ADS  Google Scholar 

  65. Vogelsberger, M.: Cosmological simulations of dark matter in APS. Meeting Abstr. R10, 003 (2015)

    Google Scholar 

  66. Di Matteo, T., Springel, V., Hernquist, L.: Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005)

    Article  ADS  Google Scholar 

  67. Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  ADS  Google Scholar 

  68. DeGraf, C., Sijacki, D.: Black hole clustering and duty cycles in the Illustris simulation. MNRAS 466, 3331–3343 (2017). arXiv:1609.06727

  69. Sijacki, D., et al.: The Illustris simulation: the evolving population of black holes across cosmic time. MNRAS 452, 575–596 (2015). arXiv:1408.6842

    Article  ADS  Google Scholar 

  70. Weinberger, R., et al.: Simulating galaxy formation with black hole driven thermal and kinetic feedback. MNRAS 465, 3291–3308 (2017). arXiv:1607.03486

  71. Genel, S., et al.: Introducing the Illustris project: the evolution of galaxy populations across cosmic time. MNRAS 445, 175–200 (2014). arXiv:1405.3749

    Article  ADS  Google Scholar 

  72. Marinacci, F., et al.: First results from the IllustrisTNG simulations: radio haloes and magnetic fields (2017). ArXiv e-prints. arXiv:1707.03396

  73. Naiman, J.P., et al.: First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium. MNRAS 477, 1206–1224 (2018). arXiv:1707.03401

  74. Pillepich, A., et al.: Simulating galaxy formation with the IllustrisTNG model. MNRAS 473, 4077–4106 (2018). arXiv:1703.02970

  75. Springel, V., et al.: First results from the IllustrisTNG simulations: matter and galaxy clustering. MNRAS 475, 676–698 (2018). arXiv:1707.03397

  76. Bhowmick, A.K., Di Matteo, T., Feng, Y., Lanusse, F.: The clustering of \(z >\) 7 galaxies: predictions from the BLUETIDES simulation. MNRAS 474, 5393–5405 (2018). arXiv:1707.02312

  77. Huang, K.-W., Di Matteo, T., Bhowmick, A.K., Feng, Y., Ma, C.-P.: BLUETIDES simulation: establishing black hole-galaxy relations at highredshift. MNRAS (2018). arXiv:1801.04951

  78. Ni, Y., Di Matteo, T., Feng, Y., Croft, R.A.C., Tenneti, A.: Gas outows from the z = 7.54 quasar: predictions from the BLUETIDES simulation. MNRAS 481, 4877–4884 (2018). arXiv:1806.00184

  79. Tenneti, A., Di Matteo, T., Croft, R., Garcia, T., Feng, Y.: The descendants of the first quasars in the BlueTides simulation. MNRAS 474, 597–603 (2018). arXiv:1708.03373

  80. Wilkins, S.M., et al.: The properties of the first galaxies in the BlueTides simulation. MNRAS 469, 2517–2530 (2017). arXiv:1704.00954

  81. Feng, Y., et al.: The BlueTides simulation: first galaxies and eionization. MNRAS 455, 2778–2791 (2016). arXiv:1504.06619

  82. Gebhardt, K., et al.: A relationship between nuclear black hole mass and galaxy velocity dispersion. ApJ 539, L13–L16 (2000)

    Article  ADS  Google Scholar 

  83. Gültekin, K., et al.: The M-\(_\sigma \) and M-L relations in galactic bulges, and determinations of their intrinsic scatter. ApJ 698, 198–221 (2009). arXiv:0903.4897 [astro-ph.GA]

    Article  ADS  Google Scholar 

  84. Häring, N., Rix, H.-W.: On the black hole mass-bulge mass relation. ApJ 604, L89–L92 (2004). arXiv:astro-ph/0402376

    Article  ADS  Google Scholar 

  85. Kormendy, J., Ho, L.C.: Coevolution (Or Not) of supermassive black holes and host galaxies. ARA & A 51, 511–653 (2013). arXiv:1304.7762 [astro-ph.CO]

    Article  ADS  Google Scholar 

  86. Magorrian, J., et al.: The demography of massive dark objects in galaxy centers. AJ 115, 2285–2305 (1998)

    Article  ADS  Google Scholar 

  87. McConnell, N.J., Ma, C.-P.: Revisiting the scaling relations of black hole masses and host galaxy properties. ApJ 764, 184 (2013). arXiv:1211.2816

    Article  ADS  Google Scholar 

  88. Reines, A.E., Volonteri, M.: Relations between central black hole mass and total galaxy stellar mass in the local universe. ApJ 813, 82 (2015). arXiv:1508.06274

  89. Tremaine, S., et al.: The slope of the black hole mass versus velocity dispersion correlation. ApJ 574, 740–753 (2002)

    Article  ADS  Google Scholar 

  90. Bower, R.G., et al.: Breaking the hierarchy of galaxy formation. MNRAS 370, 645–655 (2006). arXiv:astro-ph/0511338

    Article  ADS  Google Scholar 

  91. Ciotti, L., Ostriker, J.P., Proga, D.: Feedback from central black holes in elliptical galaxies. I. Models with either radiative or mechanical feedback but not both. ApJ 699, 89–104 (2009). arXiv:0901.1089 [astro-ph.GA]

  92. Croton, D.J., et al.: The many lives of active galactic nuclei: cooling ows, black holes and the luminosities and colours of galaxies. MNRAS 365, 11–28 (2006)

    Article  ADS  Google Scholar 

  93. Di Matteo, T., Colberg, J., Springel, V., Hernquist, L., Sijacki, D.: Direct cosmological simulations of the growth of black holes and galaxies. ApJ 676, 33–53 (2008)

    Article  ADS  Google Scholar 

  94. King, A.: Black Holes, Galaxy Formation, and the \({\rm M}_{BH}-\sigma \) Relation. ApJ 596, L27–L29 (2003)

    Article  ADS  Google Scholar 

  95. Silk, J., Rees, M.J.: 331, L1–L4 (1998)

    Google Scholar 

  96. Hirschmann, M., et al.: On the evolution of the intrinsic scatter in black hole versus galaxy mass relations. MNRAS 407, 1016–1032 (2010). arXiv:1005.2100 [astro-ph.GA]

    Article  ADS  Google Scholar 

  97. Jahnke, K., Macció, A.V.: The non-causal origin of the black- holegalaxy scaling relations. ApJ 734, 92 (2011). arXiv:1006.0482 [astro-ph.CO]

    Article  ADS  Google Scholar 

  98. Oesch, P.A., et al.: A remarkably luminous galaxy at z = 11.1 measured with hubble space telescope grism spectroscopy. ApJ 819, 129 (2016). arXiv:1603.00461

  99. Waters, D., Di Matteo, T., Feng, Y., Wilkins, S. M., Croft, R.A.C.: Forecasts for the WFIRST high latitude survey using the BlueTides simulation. MNRAS 463, 3520–3530 (2016). arXiv:1605.05670

  100. Waters, D., et al.: Monsters in the dark: predictions for luminous galaxies in the early Universe from the BLUETIDES simulation. MNRAS 461, L51–L55 (2016). arXiv:1604.00413

  101. Feng, Y., Di Matteo, T., Croft, R., Khandai, N.: High-redshift supermassive black holes: accretion through cold ows. MNRAS 440, 1865–1879 (2014). arXiv:1312.1391

    Article  ADS  Google Scholar 

  102. DeGraf, C., et al.: Scaling relations between black holes and their host galaxies: comparing theoretical and observational measurements, and the impact of selection effects. MNRAS 454, 913–932 (2015). arXiv:1412.4133

    Article  ADS  Google Scholar 

  103. DeGraf, C., et al.: Early black holes in cosmological simulations: luminosity functions and clustering behaviour. MNRAS 424, 1892–1898 (2012). arXiv:1107.1254 [astro-ph.CO]

    Article  ADS  Google Scholar 

  104. Giallongo, E., et al.: Faint AGNs at \(z >\) 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe. A&A 578, A83 (2015). arXiv:1502.02562

  105. Haiman, Z., Hui, L.: Constraining the lifetime of quasars from their spatial clustering. ApJ 547, 27–38 (2001). arXiv:astro-ph/0002190

    Article  ADS  Google Scholar 

  106. Martini, P., Weinberg, D.H.: Quasar clustering and the lifetime of quasars. ApJ 547, 12–26 (2001). arXiv:astro-ph/0002384

    Article  ADS  Google Scholar 

  107. Zhao, G.-B., Li, B., Koyama, K.: N-body simulations for f(R) gravity using a self-adaptive particle-mesh code. Phys. Rev. D 83, 044007 (2011). arXiv:1011.1257 [astro-ph.CO]

    Article  ADS  Google Scholar 

  108. Semboloni, E., Hoekstra, H., Schaye, J., van Daalen, M.P., McCarthy, I.G.: Quantifying the effect of baryon physics on weak lensing tomography. MNRAS 417, 2020–2035 (2011). arXiv:1105.1075 [astro-ph.CO]

    Article  ADS  Google Scholar 

  109. Tenneti, A., Mandelbaum, R., Di Matteo, T.: Intrinsic alignments of disk and elliptical galaxies in the MassiveBlack-II and Illustris simulations (2015). ArXiv e-prints. arXiv:1510.07024

  110. Amaro-Seoane, P., et al.: Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Grav. 29, 124016 (2012). arXiv:1202.0839 [gr-qc]

    Article  ADS  Google Scholar 

  111. Amaro-Seoane, P., et al.: eLISA: Astrophysics and cosmology in the millihertz regime. GW Notes 6, 4–110 (2013). arXiv:1201.3621 [astro-ph.CO]

    Google Scholar 

  112. Enoki, M., Inoue, K.T., Nagashima, M., Sugiyama, N.: Gravitational waves from supermassive black hole coalescence in a hierarchical galaxy formation model. ApJ 615, 19–28 (2004). arXiv:astro-ph/0404389

    Article  ADS  Google Scholar 

  113. Klein, A., et al.: Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016). arXiv:1511.05581 [gr-qc]

    Article  ADS  Google Scholar 

  114. Koushiappas, S.M., Zentner, A.R.: Testing Models of Supermassive Black Hole Seed Formation through GravityWaves. ApJ 639, 7–22 (2006). arXiv:astro-ph/0503511

    Article  ADS  Google Scholar 

  115. Micic, M., Holley-Bockelmann, K., Sigurdsson, S., Abel, T.: Supermassive black hole growth and merger rates from cosmological N-body simulations. MNRAS 380, 1533–1540 (2007). arXiv:astro-ph/0703540

    Article  ADS  Google Scholar 

  116. Sesana, A., Gair, J., Mandel, I., Vecchio, A.: Observing gravitational waves from the first generation of black holes. ApJ 698, L129–L132 (2009). arXiv:0903.4177 [astro-ph.CO]

    Article  ADS  Google Scholar 

  117. Wyithe, J.S.B., Loeb, A.: Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. ApJ 590, 691–706 (2003). arXiv:astro-ph/0211556

    Article  ADS  Google Scholar 

  118. Colpi, M., Dotti, M.: Massive Binary Black Holes in the Cosmic Landscape. Adv. Sci. Lett. 4, 181–203 (2011). arXiv:0906.4339

    Article  Google Scholar 

  119. Mayer, L.: Massive black hole binaries in gas-rich galaxy mergers; multiple regimes of orbital decay and interplay with gas inows. Class. Quantum Grav. 30, 244008 (2013). arXiv:1308.0431

    Article  ADS  MATH  Google Scholar 

  120. Colpi, M.: Massive binary black holes in galactic nuclei and their path to coalescence. Space Sci. Rev. 183, 189–221 (2014). arXiv:1407.3102

    Article  ADS  Google Scholar 

  121. Snyder, G.F., et al.: Galaxy morphology and star formation in the Illustris Simulation at z = 0. MNRAS 454, 1886–1908 (2015). ISSN: 0035-8711. http://adsabs.harvard.edu/abs/2015MNRAS.454.1886S

  122. Snyder, G.F., et al.: Diverse structural evolution at \(z >\) 1 in cosmologically simulated gal axies. MNRAS 451, 4290–4310 (2015). ISSN:0035-8711. http://adsabs.harvard.edu/abs/2015MNRAS.451.4290S

  123. Jonsson, P.: SUNRISE: polychromatic dust radiative transfer\(\ldots \). MNRAS 372, 2–20 (2006)

    Article  ADS  Google Scholar 

  124. Turk, M.J., et al.: yt: A multi-code analysis toolkit for astrophysical simulation data. ApJS 192, 9 (2011). arXiv:1011.3514 [astro-ph.IM]

    Article  ADS  Google Scholar 

  125. Pfister, H., et al.: The birth of a supermassive black hole binary. MNRAS 471, 3646–3656 (2017). arXiv:1706.04010

  126. Bowen, D.B., et al.: Quasi-periodic behavior of mini-disks in binary black holes approaching merger. ApJ 853, L17 (2018). arXiv:1712.05451 [astro-ph.HE]

    Article  ADS  Google Scholar 

  127. Farris, B.D., Duffell, P., MacFadyen, A.I., Haiman, Z.: Characteristic signatures in the thermal emission from accreting binary black holes. MNRAS 446, L36–L40 (2015). arXiv:1406.0007 [astro-ph.HE]

    Article  ADS  Google Scholar 

  128. Lousto, C.O., Zlochower, Y., Campanelli, M.: Modeling the black hole merger of QSO 3C 186. ApJ 841, L28 (2017). arXiv:1704.00809

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Di Matteo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Matteo, T. (2019). Black Holes Across Cosmic History: A Journey Through 13.8 Billion Years. In: Walter, R., Jetzer, P., Mayer, L., Produit, N. (eds) Black Hole Formation and Growth. Saas-Fee Advanced Course, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59799-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59799-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59798-9

  • Online ISBN: 978-3-662-59799-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics