Skip to main content

Temperate Steppengrasländer

  • Chapter
  • First Online:
Klimawandel und Vegetation - Eine globale Übersicht

Zusammenfassung

Die winterkalten zonalen Graslandgebiete finden sich vorwiegend in den kontinentalen Mitten Eurasiens und Nordamerikas. Die Steppen lösen in denjenigen Bereichen der temperaten Zone die Wälder ab, in denen das Klima für das Gedeihen von Bäumen zu trocken ist und zu starken interannuellen Schwankungen im Niederschlag unterworfen ist. Neben dem direkten Effekt der Trockenheit treten durch die Trockenheit ausgelöste Vegetationsbrände als begrenzender Faktor für das Waldwachstum hinzu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Addison J, Friedel M, Brown C, Davies J, Waldron S (2012) A critical review of degradation assumptions applied to Mongolia’s Gobi Desert. Rangeland J 34:125–137

    Google Scholar 

  • Albertson FW, Weaver JE (1944) Nature and degree of recovery of grassland from the great drought of 1933 to 1940. Ecol Monogr 14:393–479

    Google Scholar 

  • Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation changes and nocturnal global warming. Science 283:229–231

    CAS  Google Scholar 

  • Babel W, Biermann T, Coners H et al (2014) Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 11:6633–6656

    Google Scholar 

  • Batima P, Natsagdorj L, Gombluudev P, Erdenetsetseg B (2005) Observed climate change in Mongolia. Assessments of Impacts and Adaptation to Climate Change Working Papers AIACC 12:1–26. http://www.start.org/Projects/AIACC_Project/working_papers/Working%20Papers/AIACC_WP_No013.pdf

  • Bremer DJ, Auen LM, Ham JM, Owensby CE (2001) Evapotranspiration in a prairie ecosystem: effects of grazing by cattle. Agron J 93:338–348

    Google Scholar 

  • Brown KJ, Clark JS, Grimm EC, Donovan JJ, Mueller PG, Hansen BCS, Stefanova I (2005) Fire cycles in North American interior grasslands and their relation to prairie drought. Proc Natl Acad Sci USA 102:8865–8870

    CAS  Google Scholar 

  • Brümmer C, Black TA, Jassal RS et al (2012) How climate and vegetation influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric For Meteorol 153:14–30

    Google Scholar 

  • Cao M, Woodward FI (1998) Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol 4:185–198

    Google Scholar 

  • Chen S, Lin G, Huang J, Jenerette GD (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Change Biol 15:2450–2461

    Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–454

    Google Scholar 

  • Coupland RT (1992) Overview of the grasslands of North America. In: Coupland RT (Hrsg) Natural grasslands. Introduction and western hemisphere. Ecosystems of the world 8A. Elsevier, Amsterdam, S 147–149

    Google Scholar 

  • Cui X, Wang Y, Niu H, Wu J, Wang S, Schnug E, Rogasik J, Fleckenstein J, Tang Y (2005) Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecol Res 20:519–527

    Google Scholar 

  • Dagvadorj D, Natsagdorj L, Dorjpurev J, Namkhainyam B (2009) Mongolia assessment report on climate change 2009. Ministry of Environment, Nature and Tourism, Mongolia

    Google Scholar 

  • Du M, Kawashima S, Yonemura S, Zhang X, Chen S (2004) Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob Planet Change 41:241–249

    Google Scholar 

  • Dulamsuren Ch, Wommelsdorf T, Zhao F, Xue Y, Zhumadilov BZ, Leuschner C, Hauck M (2013) Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems 16:1536–1549

    CAS  Google Scholar 

  • Dulamsuren Ch, Klinge M, Degener J, Khishigjargal M, Chenlemuge T, Bat-Enerel B, Yeruult Y, Saindovdon D, Ganbaatar K, Tsogtbaatar J, Leuschner C, Hauck M (2016) Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe. Glob Change Biol 22:830–844

    Google Scholar 

  • Fan JW, Zhong HP, Harris W, Yu GR, Wang SQ, Hu ZM, Yu YZ (2008) Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Climatic Change 86:375–396

    CAS  Google Scholar 

  • Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009) Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. J Arid Environ 73:521–528

    Google Scholar 

  • Fanselow N, Schönbach P, Gong XY, Lin S, Taube F, Loges R, Pan Q, Dittert K (2011) Short-term regrowth responses of four steppe grassland species to grazing intensity, water and nitrogen in Inner Mongolia. Plant Soil 340:279–289

    CAS  Google Scholar 

  • Frank DA (2007) Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152:131–139

    Google Scholar 

  • Frank AB, Tanaka DL, Hofmann L, Follett RF (1995) Soil carbon and nitrogen of northern Great Plains as influenced by long-term grazing. J Range Manag 48:470–474

    Google Scholar 

  • Fu YL, Yu GR, Sun XM, Li YN, Wen XF, Zhang LM, Li ZQ, Zhao L, Hao YB (2006) Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agric For Meteorol 137:234–244

    Google Scholar 

  • Fu G, Shen ZX, Zhang XZ, Yu CQ, Zhou YT, Li YL, Yang PW (2013) Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of Tibet. J Mount Sci 10:455–463

    Google Scholar 

  • Genxu W, Ju Q, Guodong C, Yuanmin L (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ 291:207–217

    Google Scholar 

  • Grant TA, Flanders-Wanner B, Shaffer TL, Murphy RK, Knutsen GA (2009) An emerging crisis across northern prairie refuges: prevalence of invasive plants and a plan for adaptive management. Ecol Restor 27:58–65

    Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34(L06407):1–6

    Google Scholar 

  • Ham JM, Knapp AK (1998) Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89:1–14

    Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12

    CAS  Google Scholar 

  • Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Change Biol 15:2894–2904

    Google Scholar 

  • Hessl AE, Anchukaitis KJ, Jelsema C, Cook B, Byambasuren O, Leland C, Nachin B, Pederson N, Tian H, Hayles LA (2018) Past and future drought in Mongolia. Sci Adv 4(e1701832):1–7

    Google Scholar 

  • Hoerling MP, Eischeid JK, Quan XW, Diaz HF, Webb RS, Dole RM (2012) Is a transition to semipermanent drought conditions imminent in the U.S. Great Plains? J Clim 25:8380–8386

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kelly RH, Parton WJ, Hartman MD, Stretch LK, Ojima DS, Schimel DS (2000) Intra-annual and interannual variability of ecosystem processes in shortgrass steppe. J Geophys Res 105:20093–20100

    CAS  Google Scholar 

  • Knapp AK (1985) Effect of fire and drought on the ecophysiology of Andropogon gerardii and Panicum virgatum in a tallgrass prairie. Ecology 66:1309–1320

    Google Scholar 

  • Kunkel KE, Liang XZ, Zhu J, Lin Y (2006) Can GCMs simulate the twentieth-century “warming-hole” in the central United States. J Clim 19:4137–4153

    Google Scholar 

  • Kwon H, Pendall E, Ewers BE, Cleary M, Naithani K (2008) Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem. Agric For Meteorol 148:381–391

    Google Scholar 

  • Lauenroth WK, Bradford JB (2006) Ecohydrology and the partitioning AET between transpiration and evaporation in a semiarid steppe. Ecosystems 9:756–767

    Google Scholar 

  • Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (Hrsg) Natural grasslands. Eastern hemisphere and résumé. Ecosystems of the world 8B. Elsevier, Amsterdam, S 3–59

    Google Scholar 

  • Li SG, Harazono Y, Oikawa T, Zhao HL, He ZY, Chang XL (2000) Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric For Meteorol 102:125–137

    Google Scholar 

  • Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Glob Change Biol 11:1941–1955

    Google Scholar 

  • Li J, Cook ER, D’Arrigo R, Chen F, Gou X (2009) Moisture availabity across China and Mongolia: 1951–2005. Clim Dyn 32:1173–1186

    Google Scholar 

  • Liancourt P, Spence LA, Boldgiv B, Lkhagva A, Helliker BR, Casper BB, Petraitis PS (2012) Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology. Ecology 93:815–824

    Google Scholar 

  • Liu Y, Wang X, Guo M, Tani H, Matsuoka N, Matsumura S (2011) Spatial and temporal relationships among NDVI, climate factors, and land cover changes in northeast Asia from 1982 to 2009. GIScience Remote Sens 48:371–393

    Google Scholar 

  • Loeser MRR, Sisk TD, Crews TE (2007) Impact of grazing intensity during drought in an Arizona grassland. Conserv Biol 21:87–97

    Google Scholar 

  • Miehe G, Schleuss P-M, Seeber E et al (2018) The Kobresia pygmaea ecosystem of the Tibetan highlands – origin, functioning and degradation of the world’s largest pastoral ecosystem: Kobresia pastures of Tibet. Sci Total Environ 648:754–771

    Google Scholar 

  • Mohammat A, Wang X, Xu X, Peng L, Yang Y, Zhang X, Myneni RB, Piao S (2013) Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agric For Meteorol 178–179:21–30

    Google Scholar 

  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205

    CAS  Google Scholar 

  • Nakano T, Nemoto M, Shinoda M (2008) Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agric For Meteorol 148:1456–1466

    Google Scholar 

  • Nandintsetseg B, Greene JS, Goulden CE (2007) Trends in extreme daily precipitation and temperature near Lake Hövsgöl, Mongolia. Int J Climatol 27:341–347

    Google Scholar 

  • Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50:205–218

    Google Scholar 

  • Ni J (2004) Forage yield-based carbon storage in grasslands of China. Climatic Change 67:237–246

    CAS  Google Scholar 

  • Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the West Sahel. Bull Am Meteorol Soc 79:815–829

    Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO (1995) Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol 1:13–22

    Google Scholar 

  • Pederson N, Hessl AE, Baatarbileg N, Achukaitis KJ, Di Cosmo N (2014) Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA 111:4375–4379

    CAS  Google Scholar 

  • Pfeiffer M, Dulamsuren Ch, Jäschke Y, Wesche K (2018) Grasslands of China and Mongolia: spatial extent, land use and conservation. In: Squires VR, Dengler J, Feng H, Hua L (Hrsg) Grasslands of the world: diversity, management and conservation. CRC Press, Boca Raton, S 170–198

    Google Scholar 

  • Piao S, Fang J, Zhou L, Tan K, Tao S (2007) Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Glob Biogeochem Cycles 21(GB2002):1–10

    Google Scholar 

  • Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr AG (2006) Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Change Biol 12:294–310

    Google Scholar 

  • Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178–179:31–45

    Google Scholar 

  • Qi Y, Dong Y, Domroes M, Geng Y, Liu L, Liu X (2006) Comparison of CO2 effluxes and their driving factors between two temperate steppes in Inner Mongolia, China. Adv Atmos Sci 23:726–736

    CAS  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in land cover: North American croplands from 1850 to 1992. Glob Ecol Biogeogr 8:381–396

    Google Scholar 

  • Reeder JD, Schuman GE, Morgan JA, LeCain DR (2004) Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Environ Manag 33:485–495

    Google Scholar 

  • Sala OE (2001) Productivity of temperate grasslands. In: Roy J, Saugier B, Mooney H (Hrsg) Terrestrial global productivity. Academic, San Diego, S 285–300

    Google Scholar 

  • Sala OE, Lauenroth WK, Parton WJ (1992) Long-term soil water dynamics in the shortgrass steppe. Ecology 73:1175–1181

    Google Scholar 

  • Salnikov V, Turulina G, Polyakova S, Petrova Y, Skakova A (2014) Climate change in Kazakhstan during the past 70 years. Quatern Int 358:77–82

    Google Scholar 

  • Schubert SD, Wang H, Koster RD, Suarez MJ, Groisman PYa (2014) Northern Eurasian heat waves and droughts. J Clim 27:3169–3207

    Google Scholar 

  • Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA (1999) Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol Appl 9:65–71

    Google Scholar 

  • Shi P, Sun X, Xu L, Zhang X, He Y, Zhang D, Yu G (2006) Net ecosystem CO2 exchange and controlling factors in a steppe-Kobresia meadow on the Tibetan Plateau. Sci China D: Earth Sci 49(Suppl 2):207–218

    CAS  Google Scholar 

  • Shinoda M, Ito S, Nachinshonhor GU, Erdenetsetseg D (2007) Phenology of Mongolian grasslands and moisture conditions. J Meteorol Soc Japan 85:359–367

    Google Scholar 

  • Shinoda M, Nachinshonhor GU, Nemoto M (2010) Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ 74:63–69

    Google Scholar 

  • Simmons MT, Windhager S, Power P, Lott J, Lyons RK, Schwope C (2007) Selective and non-selective control of invasive plants: the short-term effects of growing-season prescribed fire, herbicide and mowing in two Texas prairies. Restor Ecol 15:662–669

    Google Scholar 

  • Sloat LL, Gerber JS, Samberg LH, Smith WK, Herrero M, Ferreira LG, Godde CM, West PC (2018) Increasing importance of precipitation variability on global livestock grazing lands. Nat Clim Change 8:214–218

    Google Scholar 

  • Sternberg T, Thomas D, Middleton N (2011) Drought dynamics on the Mongolian steppe, 1970–2006. Int J Climatol 31:1823–1830

    Google Scholar 

  • Sternberg T, Rueff H, Middleton N (2015) Contraction of the Gobi Desert, 2000–2012. Remote Sens 7:1346–1358

    Google Scholar 

  • Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Change Biol 7:279–289

    Google Scholar 

  • Tilman D, El Haddi A (1992) Drought and biodiversity in grasslands. Oecologia 89:257–264

    CAS  Google Scholar 

  • Torn MS, Lapenis AG, Timofeev A, Fischer ML, Babikiv BV, Harden JW (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Glob Change Biol 8:941–953

    Google Scholar 

  • van Staalduinen MA, Werger MJA (2006) Vegetation ecological features of dry inner and outer Mongolia. Berichte der Reinhold-Tüxen-Gesellschaft 18:117–128

    Google Scholar 

  • Volder A, Briske DD, Tjoelker MG (2013) Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna. Glob Change Biol 19:843–857

    Google Scholar 

  • von Wehrden H, Hanspach J, Ronnenberg K, Wesche K (2010) Inter-annual rainfall variability in Central Asia – a contribution to the discussion on the importance of environmental stochasticity in drylands. J Arid Environ 74:1212–1215

    Google Scholar 

  • Wang B, French HM (1995) Permafrost on the Tibetan Plateau, China. Quatern Sci Rev 14:255–274

    Google Scholar 

  • Wang S, Zhou C, Liu J, Tian H, Li K, Yang X (2002) Carbon storage in northeast China as estimated from vegetation and soil inventories. Environ Pollut 116:S157–S165

    CAS  Google Scholar 

  • Wang Y, Zhou G, Wang Y (2008) Environmental effects on net ecosystem CO2 exchange at half-hour and month scales over Stipa krylovii steppe in northern China. Agric For Meteorol 148:714–722

    Google Scholar 

  • Weaver SJ (2013) Factors associated with decadal variability in Great Plains summertime surface temperatures. J Clim 26:343–350

    Google Scholar 

  • Weaver JE, Albertson FW (1943) Effects of the great drought on the prairies of Iowa, Nebraska, and Kansas. Ecology 17:567–639

    Google Scholar 

  • White SR, Carlyle CN, Fraser LH, Cahill JF (2011) Climate change experiments in temperate grasslands: synthesis and future directions. Biol Lett 8(4):484–487. https://doi.org/10.1098/rsbl.2011.0956

  • Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res 113(D13108):1–22

    Google Scholar 

  • Wu GL, Du GZ, Liu ZH, Thirgood S (2009) Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil 319:115–126

    CAS  Google Scholar 

  • Xue X, Guo J, Han B, Sun Q, Liu L (2009) The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology 108:182–190

    Google Scholar 

  • Yang Y, Fang Y, Tang Y, Ji C, Zheng C, He J, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14:1592–1599

    Google Scholar 

  • Yang Y, Fang Y, Ji C, Han W (2009a) Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci 20:177–184

    Google Scholar 

  • Yang Y, Fang Y, Smith P, Tang Y, Chen A, Ji C, Hu H, Rao S, Tan K, He JS (2009b) Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Change Biol 15:2723–2729

    Google Scholar 

  • Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci Rev 103:31–44

    Google Scholar 

  • Yang F, Zhou G, Hunt JE, Zhang F (2011) Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agric Ecosyst Environ 142:318–328

    Google Scholar 

  • Yang B, Qin C, Wang J, He M, Melvin TM, Osborn TJ, Briffa KR (2014) A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci USA 111:2903–2908

    CAS  Google Scholar 

  • Yu F, Price KP, Ellis J, Feddema JJ, Shi P (2004) Interannual variations of the grassland boundaries bordering the eastern edges of the Gobi Desert in central Asia. Int J Remote Sens 20:327–346

    Google Scholar 

  • Zeng N, Yoon J (2009) Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys Res Lett 36(L17401):1–5

    Google Scholar 

  • Zha T, Barr AG, van der Kamp G, Black TA, McCaughey JH, Flanagan LB (2010) Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agric For Meteorol 150:1476–1484

    Google Scholar 

  • Zhang L, Wylie BK, Ji L, Gilmanov TG, Tieszen LL (2010) Climate-driven interannual variability in net ecosystem exchange in the northern Great Plains grasslands. Rangeland Ecol Manag 63:40–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hauck .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauck, M., Leuschner, C., Homeier, J. (2019). Temperate Steppengrasländer. In: Klimawandel und Vegetation - Eine globale Übersicht. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59791-0_6

Download citation

Publish with us

Policies and ethics