Skip to main content

Globaler Klimawandel: die Grundlagen

  • Chapter
  • First Online:
Klimawandel und Vegetation - Eine globale Übersicht

Zusammenfassung

Der Treibhauseffekt beruht auf der Absorption terrestrischer Infrarotstrahlung in der Erdatmosphäre. Wasserdampf reduziert die Transmissivität der Erdatmosphäre für Infrarotstrahlung in einem weiten Wellenlängenbereich und ist das wichtigste Treibhausgas. Kohlendioxid (CO2) hat ein Absorptionsmaximum bei 15 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    CAS  Google Scholar 

  • Ahmed M, Anchukaitis KJ, Asrat A et al (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346

    CAS  Google Scholar 

  • Akimoto H, Ohara T, Kurokawa J-I, Horii N (2006) Verification of energy consumption in China during 1996‒2003 using satellite observational data. Atmos Environ 40:7663–7667

    CAS  Google Scholar 

  • Altenburg T, Schmitz H, Stamm A (2008) Breakthrough? China’s and India’s transition from production to innovation. World Develop 36:325–344

    Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    CAS  Google Scholar 

  • Andres J, Fieldin DJ, Marland G, Boden TA, Kumar N, Kearney T (1999) Carbon dioxide emissions from fossil-fuel use, 1751‒1950. Tellus B 51:759–765

    Google Scholar 

  • Anisimov OA, Nelson FE (1996) Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Glob Planet Change 14:59–72

    Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Phil Mag J Sci 5(41):237–276

    Google Scholar 

  • Arrhenius S (1906) Die vermutliche Ursache der Klima-Schwankungen. Medd Kungl Vetenskapsakad Nobel-Inst 1(2):1–110

    Google Scholar 

  • Aselman I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Google Scholar 

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycl 20(GB2017):1–15

    Google Scholar 

  • Barker HW (1996) Estimating cloud field albedo using one-dimensional series of optical depth. J Atmos Sci 53:2826–2837

    Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    CAS  Google Scholar 

  • Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst Sci Data 5:71–99

    Google Scholar 

  • Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31(L02202):1–4

    Google Scholar 

  • Bergstrom RW, Russell PB, Hignett P (2002) Wavelength dependence of the absorption of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J Atmos Sci 59:567–577

    Google Scholar 

  • Berner RA (1997) The rise of plants and their effect on weathering and atmospheric CO2. Science 276:544–546

    CAS  Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    CAS  Google Scholar 

  • Bird MI, Chivas AR, Head J (1996) A latitudinal gradients in carbon turnover in forest soils. Nature 381:143–146

    CAS  Google Scholar 

  • Bockheim JG (1995) Permafrost distribution in the southern circumpolar region and its relation to the environment: a review and recommendations for further research. Permafrost Periglac Process 6:27–45

    Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors an ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global respiration record. Nature 464:579–582

    CAS  Google Scholar 

  • Boucher O, Friedlingstein P, Collins B, Shine KP (2009) The indirect global warming potential and global temperature change potential due to methane oxidation. Environ Res Lett 4(044007):1–5

    Google Scholar 

  • Bowman KP, Cohen PJ (1997) Interhemispheric exchange by seasonal modulation of the Hadley circulation. J Atmos Sci 54:2045–2059

    Google Scholar 

  • Bouwman AF, Beusen AHW, Griffioen J, Van Groeningen JW, Hefting MM, Oenema O, Van Puijenbroek PJTM, Seitzinger S, Slomp CP, Stehfest E (2013) Global trends and uncertainties in terrestrial denitrification and N2O emissions. Phil Trans Roy Soc B 368:20130112

    CAS  Google Scholar 

  • Box JE (2002) Survey of Greenland instrumental temperature records: 1873–2001. Int J Climatol 22:1829–1847

    Google Scholar 

  • Brönnimann S (2018) Klimatologie. Haupt, Bern

    Google Scholar 

  • Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2145

    Google Scholar 

  • Boyd PW, Watson AJ, Law CS et al (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    CAS  Google Scholar 

  • Bubenzer O, Radtke U(2007) Natürliche Klimaänderungen im Laufe der Erdgeschichte. In: Endlicher W, Gerstengarbe F-W (Hrsg) Der Klimawandel. Einblicke, Rückblicke und Ausblicke. Deutsche Gesellschaft für Geographie, Berlin, S 17–26

    Google Scholar 

  • Büntgen U, Wacker L, Galván JD et al (2018) Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat Commun 9(3605):1–7

    Google Scholar 

  • Caldiera K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299:2052–2054

    Google Scholar 

  • Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change 68:135–152

    CAS  Google Scholar 

  • Cao M, Woodward FI (1998) Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol 4:185–198

    Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229

    CAS  Google Scholar 

  • Cassady AE, Christen A, Henry GHR (2016) The effect of a permafrost disturbance on growing-season carbon dioxide fluxes in a high Arctic tundra ecosystem. Biogeosciences 13:2291–2303

    Google Scholar 

  • Cheng G, Wu T (2004) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112(F02S03):1–10

    Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(L04501):1–4

    Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climatic Change 81:1–6

    Google Scholar 

  • Chung SH, Seinfeld JH (2002) Global distribution and climate forcing of carbonaceous aerosols. J Geophys Res 107(4407):1–33

    Google Scholar 

  • Chung CE, Ramanathan V, Kim D, Podgorny IA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110(D24207):1–17

    Google Scholar 

  • Cohen J, Pfeiffer K, Francis JA (2018) Warm Arctic episodes linked with increased frequency of extreme winter weather in the Unites States. Nat Commun 9(869):1–12

    Google Scholar 

  • Cook KH (2013) Climate dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart J Roy Meteorol Soc 140:1935–1944

    Google Scholar 

  • Crowley TJ, Lowery TS (2000) How warm was the Medieval Warm Period? Ambio 29:51–54

    Google Scholar 

  • Crucifix M, Loutre M-F, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an earth system model of intermediate complexity. Clim Dyn 19:43–60

    Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    CAS  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Google Scholar 

  • D’Arrigo R, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob Biogeochem Cycl 18(GB3021):1–7

    Google Scholar 

  • de Klein CAM, Logtestijn RSP (1994) Denitrification and N2O emission from urine-affected grassland soil. Plant Soil 163:235–242

    Google Scholar 

  • DeLorey DC, Cronn DR, Farmer JC (1988) Tropospheric latitudinal distribution of CF2Cl2, CFCl3, N2O, CH3CCl3, and CCl4 over the remote Pacific Ocean. Atmos Environ 22:1481–1494

    CAS  Google Scholar 

  • Dentener F, Stevenson D, Ellingsen K et al (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594

    CAS  Google Scholar 

  • Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Google Scholar 

  • Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    CAS  Google Scholar 

  • Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. Oceanography 14:50–58

    Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Chang Biol 12:2336–2351

    Google Scholar 

  • Entin JK, Robock A, Vinnikov KY, Hollinger SE, Liu S, Namkhai A (2000) Temporal and spatial scales of observed soil moisture variations in the extratropics. J Geophys Res D 105:11865–11877

    Google Scholar 

  • Enting IG, Mansbridge JV (1991) Latitudinal distribution of sources and sinks of CO2: results of an inversion study. Tellus B 43:156–170

    Google Scholar 

  • Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012) Orbital forcing of tree-ring data. Nat Clim Change 2:862–866

    Google Scholar 

  • Esper J, George SS, Anchukaitis K, D’Arrigo D, Ljungqvist FC, Luterbacher J, Schneider L, Stoffel M, Wilson B, Büntgen U (2018) Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 50:81–90

    Google Scholar 

  • Estrada F, Perron P, Martínez-López B (2013) Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat Geosci 6:1050–1055

    CAS  Google Scholar 

  • Eugster W, Rouse WR, Pielke RA, McFadden JP, Baldocchi DD, Kittel TGF, Chapin FS, Liston GE, Vidale PL, Vaganov E, Chambers S (2000) Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob Change Biol 6(Suppl 1):84–115

    Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    CAS  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification. Present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094

    CAS  Google Scholar 

  • Fernández-Martínez M, ViccaS Janssens IA et al (2014) Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Change 4:471–476

    Google Scholar 

  • Fernández-Martínez M, Sardans J, Chevallier F, Ciais P, Obersteiner M, ViccaS Canadell JG, Bastos A, Friedlingstein P, Sitch S, Piao SL, Janssens IA, Peñuelas J (2019) Global trends in carbon sinks and their relationship with CO2 and temperature. Nat Clim Change 9:73–79

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowksi PG (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  Google Scholar 

  • Fisher DA, Hales CH, Wang W-C, Ko MKW, Sze ND (1990) Model calculations of the relative effects of CFCs and their replacement on global warming. Nature 344:513–516

    CAS  Google Scholar 

  • Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Phil Trans Roy Soc B 368:20130164

    Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid latitudes. Geophys Res Lett 39(06801):1–6

    Google Scholar 

  • Francis JA, Vavrus SJ (2015) Evidence for a wavier jet stream in response to rapid Arctic warming. Environ Res Lett 10(014005):1–12

    Google Scholar 

  • Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci USA 102:11201–11206

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    CAS  Google Scholar 

  • Geller LS, Elkins JW, Lobert JM, Clarke AD, Hurst DF, Butler JH, Myers RC (1997) Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys Res Lett 24:675–678

    CAS  Google Scholar 

  • Gibson CC, Ostrom E, Ahn TK (2000) The concept of scale and the human dimensions of global change: a survey. Ecol Econ 32:217–239

    Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(L08707):1–4

    Google Scholar 

  • Goldewijk KK (2001) Estimating global land use change over the past 300 years: the HYDE database. Glob Biogeochem Cycl 15:417–433

    Google Scholar 

  • Goodess CM, Hall J, Best M, Betts R, Cabantous L, Jones PD, Kilsby CG, Pearman A, Wallace CJ (2007) Climate scenarios and decision making under uncertainty. Built Environ 33:10–30

    Google Scholar 

  • Grace J, Malhi Y, Higuchi N, Meir P (2001) Productivity of tropical rain forests. In: Roy J, Saugier B, Mooney HA (Hrsg) Terrestrial global productivity. Academic Press, San Diego, S 401–426

    Google Scholar 

  • Gregg JS, Andres J, Marland G (2008) China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett 35(L08806):1–5

    Google Scholar 

  • Grenfell TC, Perovich DK (1984) Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. J Geophys Res C 3:3573–3580

    Google Scholar 

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233

    Google Scholar 

  • Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31(L13504):1–4

    Google Scholar 

  • Guemas V, Doblas-Reyes FJ, Andreu-BurilloI Asif A (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649–653

    Google Scholar 

  • Guglielmin M, Dramis F (1999) Permafrost as a climatic indicator in northern Victoria Land, Antarctica. Ann Glaciol 29:131–135

    Google Scholar 

  • Guodong C, Dramis F (1992) Distribution of mountain permafrost and climate. Permafrost Periglac Process 3:83–91

    Google Scholar 

  • Gurk C, Fischer H, Hoor P, Lawrence MG, Lelieveld J, Wernlo H (2008) Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe. Atmos Chem Phys 8:6395–6403

    CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res D 102:6831–6864

    CAS  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(RG4004):1–29

    Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109:E2415–E2423

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehmann SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    CAS  Google Scholar 

  • Harangozo SA (2000) A search for ENSO teleconnections in the west Antarctic Peninsula climate in austral winter. Int J Climatol 20:663–679

    Google Scholar 

  • Hauck M, Dulamsuren Ch, Leuschner C (2016) Anomalous increase in winter temperature and decline in forest growth associated with severe winter smog in the Ulan Bator basin. Water Air Soil Pollut 227(261):1–10

    CAS  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteor Soc 90:1095–1107

    Google Scholar 

  • Hayhurst AN, Lawrence AD (1992) Emissions of nitrous oxides from combustion sources. Progr Energy Combust Sci 18:529–552

    CAS  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    CAS  Google Scholar 

  • Hearing TW, Harvey THP, Williams M, Leng MJ, Lamb AL, Wilby PR, Gabbott SE, Pohl A, Donnadieu Y (2018) An early Cambrian greenhouse climate. Sci Adv 4(eaar5680):1–11

    Google Scholar 

  • Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

    Google Scholar 

  • Hill DJ, Dolan AM, Haywood AM, Hunter SJ, Stoll DK (2010) Sensitivity of the Greenland Ice Sheet to Pliocene sea surface temperatures. Stratigraphy 7:111–122

    Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–509

    Google Scholar 

  • Hu C, Yang S, Wu Q, Li Z, Chen J, Deng K, Zhang T, Zhang C (2016) Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat Commun 7(11721):1–9

    CAS  Google Scholar 

  • Indermühle A, Monnin E, Stauffer B, Stocker TF, Wahlen M (2000) Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys Res Lett 27:735–738

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobeit J (2007) Zusammenhänge und Wechselwirkungen im Klimasystem. In: Endlicher W, Gerstengarbe F-W (Hrsg) Der Klimawandel. Einblicke, Rückblicke und Ausblicke. Deutsche Gesellschaft für Geographie, Berlin, S 1–16

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    CAS  Google Scholar 

  • Jain AK, Briegleb BP, Minschwaner K, Wuebbles DJ (2000) Radiative forcings and global warming potentials of 39 greenhouse gases. J Geophys Res D 105:20773–20790

    CAS  Google Scholar 

  • Jickells TD, An ZS, Andersen KK et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Jones RN (2000) Managing uncertainty in climate change projections – Issues for impact assessment. Clim Change 45:403–419

    Google Scholar 

  • Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33(L02503):1–4

    Google Scholar 

  • Jung M, Reichstein M, Ciais P et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954

    CAS  Google Scholar 

  • Kai FM, Tyler SC, Randerson JT, Blake DR (2011) Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476:194–197

    CAS  Google Scholar 

  • Keeling CD (1973) Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25:174–198

    CAS  Google Scholar 

  • Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci USA 106:11635–11640

    Google Scholar 

  • Kicklighter DW, Bondeau A, Schloss AL, Kaduk J, McGuire AD (1999) Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Glob Change Biol 5(Suppl 1):16–24

    Google Scholar 

  • Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090

    Google Scholar 

  • Kim J-S, Kug J-S, Jeong S-J, Huntzinger DN, Michalak AM, Schwalm CR, Wei Y, Schaefer K (2017) Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat Geosci 10:572–576

    CAS  Google Scholar 

  • Kindler R, Siemens J, Kaiser K et al (2011) Dissolved organic carbon from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17:1167–1185

    Google Scholar 

  • Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51

    CAS  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinsberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97:1400–1405

    Google Scholar 

  • Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer E-M (2018) Methane production as key to the greenhouse gas budget of thawing permafrost. Nat Clim Change 8:309–312

    CAS  Google Scholar 

  • Knowles N, Dettinger MD, Cayan DR (2006) Trends in snowfall versus rainfall in the western United States. J Clim 19:4545–4559

    Google Scholar 

  • Kort EA, Frankenberg C, Costigan KR, Lindenmaier R, Dubey MK, Wunch D (2014) Four Corners: the largest US methane anomaly viewed from space. Geophys Res Lett 501:403–407. https://doi.org/10.1002/2014gl061503

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    CAS  Google Scholar 

  • Kotowska MM, Leuschner C, Triadiati T, Meriem S, Hertel D (2015) Quantifying above- and belowground biomass carbon loss with forest conversion in the tropical lowlands of Sumatra (Indonesia). Glob Change Biol 21:3620–3634

    Google Scholar 

  • Kunkel KE, Palecki MA, Ensor L, Easterling D, Hubbard KG, Robinson D, Redmond K (2009) Trends in twentieth-century U.S. extreme snowfall seasons. J Clim 22:6204–6216

    Google Scholar 

  • Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344:529–531

    CAS  Google Scholar 

  • Lassey KR (2007) Livestock methane emission: from the individual grazing animal through national inventories to the global methane cycle. Agric For Meteor 142:120–132

    Google Scholar 

  • Latif M (2006) Klima. Fischer, Frankfurt

    Google Scholar 

  • Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32(L24401):1–5

    Google Scholar 

  • Lejeune Q, Davin EL, Gudmundsson L, Winckler J, Seneviratne SI (2018) Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat Clim Change 8:386–390

    Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P et al (2018) Global carbon budget 2018. Earth Syst Sci Data 10:2141–2194

    Google Scholar 

  • Le Quéré C, Korsbakken JI, Wilson C, Tosun J, Andrew R, Andres RJ, Canadell JG, Jordan A, Peters GP, van Vuuren DP (2019) Drivers of declining CO2 emissions in 18 developed economies. Nat Clim Change 9:213–217

    Google Scholar 

  • Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57:25–35

    Google Scholar 

  • Lin J, Pan D, Davis SJ, Zhang Q, He K, Wang C, Streets DG, Wuebbles DJ, Guan D (2014) China’s international trade and air pollution in the Unites States. Proc Natl Acad USA 111:1736–1741

    Google Scholar 

  • Lobert JM, Scharffe DH, Hao WM, Crutzen PJ (1990) Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases. Nature 346:552–554

    CAS  Google Scholar 

  • Loustau D, Hungate B, Drake BG (2001) Water, nitrogen, rising atmospheric CO2, and terrestrial productivity. In: Roy J, Saugier B, Mooney HA (Hrsg) Terrestrial global productivity. Academic Press, San Diego, S 123–167

    Google Scholar 

  • Maiss M, Levine I (1994) Global increase of SF6 observed in the atmosphere. Geophys Res Lett 21:569–572

    CAS  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260

    CAS  Google Scholar 

  • Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201

    CAS  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycl 1:61–86

    CAS  Google Scholar 

  • Means JE, MacMillan PC, Cromack K (1992) Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA. Can J For Res 22:1536–1546

    CAS  Google Scholar 

  • Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian Monsoon. J Clim 21:2869–2882

    Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    CAS  Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap Atmos. Chem Phys 10:4559–4571

    CAS  Google Scholar 

  • Monaghan AJ, Bromwich DH, Fogt RL et al (2006) Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313:827–831

    CAS  Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    CAS  Google Scholar 

  • Monteny G-J, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosys Environ 112:163–170

    CAS  Google Scholar 

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117(D08101):1–22

    Google Scholar 

  • Mosier A, Kroenze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    CAS  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    CAS  Google Scholar 

  • Naish T, Powell R, Levy R et al (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328

    CAS  Google Scholar 

  • Nakazawa T, Miyashita K, Aoki S, Tanaka M (1991) Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide. Tellus B 43:106–117

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    CAS  Google Scholar 

  • Neue H-U (1993) Methane emissions from rice fields. BioScience 43:466–474

    Google Scholar 

  • Newman MJ, Rood RT (1977) Implications of solar evolution for the earth’s early atmosphere. Science 198:1035–1037

    CAS  Google Scholar 

  • NOAA (2019) Global Monitoring Division, combined data sets. NOAA Earth System Research Laboratory, Boulder (www.esrl.noaa.gov/gmd)

  • Novakov T, Ramanathan V, Hansen JE, Kirchstetter TW, Sato M, Sinton JE, Sathaye JA (2003) Large historical changes of fossil-fuel black carbon aerosols. Geophys Res Lett 30(1324):1–4

    Google Scholar 

  • Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D, Vourlitis G (1994) Transient nature of CO2 fertilization in arctic tundra. Nature 371:500–503

    CAS  Google Scholar 

  • Ohmura A (2009) Observed decadal variations in surface solar radiation and their causes. J Geophys Res 114 (D00D05):1–9

    Google Scholar 

  • Ohmura A, Lang H (1989) Secular variation of global radiation in Europe. In: Lenoble J, Geleyn J-F (Hrsg) Current problems in atmospheric radiation. Deepak, Hampton, S 298–301

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    CAS  Google Scholar 

  • Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuirre AD, Romanovsky VE, Sannel ABK, Schuur EAG, Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nat Commun 7(13043):1–11

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    CAS  Google Scholar 

  • Overland JE, Dethloff K, Francis JA, Hall RJ, Hanna E, Kim S-J, Screen JA, Shepherd TG, Vihma T (2016) Nonlinear response of mid-latitude weather to the changing Arctic. Nat Clim Change 6:992–999

    Google Scholar 

  • Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, Kulmala AE (1996) Generalized model for N2 and N2O production from nitrification and denitrification. Glob Biogeochem Cycl 10:401–412

    CAS  Google Scholar 

  • Patra PK, Takigawa M, Dutton GS, Uhse K, Ishijima K, Lintner BR, Miyazaki K, Elkins JW (2009) Transport mechanisms for synoptic, seasonal and interannual SF6 variations and “age” of air in the troposphere. Atmos Chem Phys 9:1209–1225

    CAS  Google Scholar 

  • Pautler BG, Simpson AJ, McNally DJ, Lamoureux SF, Simpson MJ (2010) Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol 44:4076–4082

    CAS  Google Scholar 

  • Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31(L18208):1–4

    Google Scholar 

  • Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ (2013) Quasiresonant amplification of planetary waves and recent northern hemisphere weather extremes. Proc Natl Acad Sci USA 110:5336–5341

    Google Scholar 

  • Pollard D, DeConto RM (2009) Modeling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332

    CAS  Google Scholar 

  • Poth M, Anderson IC, Miranda HS, Miranda AC, Riggan PJ (1995) The magnitude and persistence of soil NO, N2O, CH4, and CO2 fluxes from burned tropical savanna soil in Brazil. Glob Biogeochem Cycl 9:503–513

    CAS  Google Scholar 

  • Poumadère M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Analysis 25:1483–1494

    Google Scholar 

  • Prudhomme C, Giuntoli I, Robinson EL et al (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci USA 111:3262–3267

    Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980‒94. Glob Change Biol 8:800–812

    Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    CAS  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63

    CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    CAS  Google Scholar 

  • Raschke E, Ohmura A (2005) Radiation budget of the climate system. In: Hantel M (Hrsg) Observed global climate. Landolt-Börnstein. Group V Geophysics. Springer, Berlin, S 25–46

    Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    CAS  Google Scholar 

  • Robock A (1980) The seasonal cycle of snow cover, sea ice and surface albedo. Monthly Weather Rev 108:267–285

    Google Scholar 

  • Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A (2010) The global soil moisture data bank. Bull Am Meteorol Soc 81:1281–1299

    Google Scholar 

  • Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475

    Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982‒2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964

    Google Scholar 

  • Romanovskii NN, Hubberten H-W (2001) Results of permafrost modelling of the lowlands and shelf of the Laptev Sea region, Russia. Permafrost Periglac Process 12:191–202

    Google Scholar 

  • Romanovskii NN, Hubberten H-W, Gavrilov AV, Tumskoy VE, Kholodov AL (2004) Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quatern Sci Rev 23:1359–136

    Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    CAS  Google Scholar 

  • Royer DL, Berner RA, Montañez IP, Tabor NJ, Beerling DJ (2004) CO2 as a primary driver of Phanerozoic climate. Geol Soc Am Today 14:4–10

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    CAS  Google Scholar 

  • Saeki T, Nakazawa T, Tanaka M (1998) Methane emissions deduced from a two-dimensional atmospheric transport model and surface measurements. J Meteorol Soc Jap 76:307–324

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    CAS  Google Scholar 

  • Schmitt RW (2008) Salinity and the global water cycle. Oceanography 21:12–19

    Google Scholar 

  • Schneider L, Smerdon JE, Pretis F, Hartl-Meier C, Esper J (2017) A new archive of large volcanic events over the past millennium derived from reconstructed summer temperatures. Environ Res Lett 12(094005):1–10

    Google Scholar 

  • Schubert SD, Wang H, Koster RD, Suarez MJ, Groisman PY (2014) Northern Eurasian heat waves and droughts. J Clim 27:3169–3207

    Google Scholar 

  • Schulze E-D, Lange OL, Oren R (1989) Forest decline and air pollution. Ecol Stud 77:1–475

    Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58:701–714

    Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickmann JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559

    CAS  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C et al (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    CAS  Google Scholar 

  • Screen JA, Simmonds I (2014) Amplified mid-latitude planetary waves favour regional weather extremes. Nat Clim Change 4:704–709

    Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2. Aufl. Wiley, New York

    Google Scholar 

  • Serquet G, Marty C, Dulex J-P, Rebetez M (2011) Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys Res Lett 38(L07703):1–5

    Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the Great Oxidation Event. Curr Biol 19:R567–R574

    CAS  Google Scholar 

  • Sévellec F, Fedorov AV, Liu W (2017) Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat Clim Change 7:604–610

    Google Scholar 

  • Shakhova N, Semiletov I, Leifer I, Sergienko V, Salyuk A, Kosmach D, Chernykh D, Stubbs C, Nicolsky D, Tumskoy V, Gustafsson Ö (2014) Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat Geosci 7:64–70

    CAS  Google Scholar 

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438

    CAS  Google Scholar 

  • Sherwood S, Fu Q (2014) A drier future? Science 343:737–739

    CAS  Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycl 8:279–293

    CAS  Google Scholar 

  • Shine KP (2009) The global warming potential – the need for an interdisciplinary retrial. Climatic Change 96:467–472

    Google Scholar 

  • Shine KP, Fugletvedt JS, Hailemariam K, Stuber N (2005) Alternatives to global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change 68:281–302

    CAS  Google Scholar 

  • Smith AJA, Peters DM, McPheat R, Lukanihins S, Graigner RG (2015) Measuring black carbon spectral extinction in the visible and infrared. J Geophys Res Atmos 120:9670–9683

    CAS  Google Scholar 

  • Smith HJ, Wahlen M, Mastroianni D (1997) The CO2 concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition. Geophys Res Lett 24:1–4

    CAS  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429

    CAS  Google Scholar 

  • Smith TM, Arkin PA, Ren L, Shen SSP (2012) Improved reconstruction of global precipitation since 1900. J Atmos Ocean Technol 29:1505–1517

    Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683

    CAS  Google Scholar 

  • Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res Space Phys 108(1200):1–8

    Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature 431:1084–1086

    CAS  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113 (C03S90):1–20

    Google Scholar 

  • Staten PW, Lu J, Grise KM, Davis SM, Birner T (2018) Re-examining tropical expansion. Nat Clim Change 8:768–775

    Google Scholar 

  • Stendel M, Christensen JH (2002) Impact of global warming on permafrost conditions in a coupled GCM. Geophys Res Lett 29(1632):1–4

    Google Scholar 

  • Stephens BB, Gurney KR, Tans PP et al (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735

    CAS  Google Scholar 

  • Steven B, Léveillé R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Google Scholar 

  • Strong C, Magnusdottir G (2008) Tropospheric Rossby wave breaking and the NAO/NAM. J Atmos Sci 65:2861–2876

    Google Scholar 

  • Sugimoto A, Yanagisawa N, Naito D, Fujita N, Maximov TC (2002) Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol Res 17:493–503

    Google Scholar 

  • Swetnam TW, Batancourt TL (1993) Temporal patterns of El Niño/Southern Oscillation-wildfire teleconnections in the southwestern United States. In: Diaz HF, Markgraf V (Hrsg) El Niño: historical and palaeoclimatic aspects of the Southern Oscillation. Cambridge University Press, Cambridge, S 259–270

    Google Scholar 

  • Takeuchi Y, Endo Y, Murakami S (2008) High correlation between winter precipitation and air temperature in heavy-snowfall areas in Japan. Ann Glaciol 49:7–10

    Google Scholar 

  • Tanaka K, O’Neill BC, Rokityanski D, Obersteiner M, Tol RSJ (2009) Evaluating global warming potentials with historical temperature. Climatic Change 96:443–466

    CAS  Google Scholar 

  • Tang Q, Zhang X, Francis JA (2014) Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat Clim Change 4:45–50

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycl 23(GB2023):1–11

    Google Scholar 

  • Tennant WJ, Reason CJC (2005) Associations between the global energy cycle and regional rainfall in South Africa and Southwest Australia. J Clim 18:3032–3047

    Google Scholar 

  • Trenberth KE (2015) Has there been a hiatus? Science 349:691–692

    CAS  Google Scholar 

  • Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769

    Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22

    Google Scholar 

  • Turner BL, Meyer WB, Skole DL (1994) Global land-use/land-cover change: towards an integrated study. Ambio 23:91–94

    Google Scholar 

  • Tyson PD, Sturman AP, Fitzharris BB, Mason SJ, Owens IF (1997) Circulation changes and teleconnections between glacial advances on the west coast of New Zealand and extended spells of drought years in South Africa. Int J Climatol 17:1499–1512

    Google Scholar 

  • van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901‒2009. J Geophys Res Atmos 118:4025–4048

    Google Scholar 

  • van Oldenborgh GJ, Burgers G, Klein Tank A (2000) On the El Niño teleconnection to spring precipitation in Europe. Int J Climatol 20:565–574

    Google Scholar 

  • van Tuyl S, Law BE, Turner DP, Gitelman AI (2005) Variability in net primary production and carbon storage in biomass across Oregon forests: an assessment integrating data from forest inventories, intensive sites, and remote sensing. Forest Ecol Manag 209:273–291

    Google Scholar 

  • Varshney CK, Attri AK (1999) Global warming potential of biogenic methane. Tellus B 51:612–615

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60:243–274

    Google Scholar 

  • Veizer J, Godderis Y, François LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408:698–701

    CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997a) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997b) Human domination of earth’s ecosystems. Science 277:494–499

    CAS  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil Trans Roy Soc B 368:20130119

    Google Scholar 

  • Vose RS, Arndt D, Banzon VF, Easterling DR, Gleason B, Huang B, Kearns E, Lawrimore JH, Menne MJ, Peterson TC, Reynolds RW, Smith TM, Williams CN, Wuertz DB (2012) NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteorol Soc 93:1677–1685

    Google Scholar 

  • Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B (2013) The marine nitrogen cycle: recent discoveries, uncertainties, and the potential relevance of climate change. Phil Trans Roy Soc B 368:20130121

    Google Scholar 

  • Walker JCG, Hays PB (1981) A negative feedback mechanism for the long-term stabilization of earth’s surface temperature. J Geophys Res C 86:9776–9782

    CAS  Google Scholar 

  • Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural variability to global warming acceleration and hiatus. Nat Clim Change 4:893–897

    Google Scholar 

  • Weart S (2013) The discovery of global warming: the carbon dioxide greenhouse effect. http://www.aip.org/history/climate/co2.htm. Zugegriffen: 16. Nov. 2013

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emissions from Wetlands. Nature 364:794–795

    CAS  Google Scholar 

  • Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114 (D00D16):1–31

    Google Scholar 

  • Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at earth’s surface. Science 308:847–850

    CAS  Google Scholar 

  • Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34(L04702):1–4

    Google Scholar 

  • WMO (2013) Greenhouse gas bulletin. The state of greenhouse gases in the atmosphere based on global observations through 2012. World Meteorological Organization, Geneva

    Google Scholar 

  • WMO (2017) Greenhouse gas bulletin. The state of greenhouse gases in the atmosphere based on global observations through 2016. World Meteorological Organization, Geneva

    Google Scholar 

  • Wilbanks TJ, Kates RW (1999) Global change in local places: how scale matters. Climatic Change 43:601–628

    Google Scholar 

  • Winiwarter W, Erisman JW, Galloway JN, Klimont Z, Sutton MA (2013) Estimating environmentally relevant fixed nitrogen demand in the 21st century. Clim Change 120:889–901

    Google Scholar 

  • Wu B, Lin J, Zhou T (2016) Interdecadal circumglobal teleconnection patterns during boreal summer. Atmos Sci Lett 17:446–452

    Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac Process 14:151–160

    Google Scholar 

  • Zhai P, Yu R, Guo Y, Li Q, Ren X, Wang Y, Xu W, Liu Y, Ding Y (2016) The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J Meteorol Res 30:283–297

    Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground ice in the northern hemisphere. Polar Geogr 24:126–131

    Google Scholar 

  • Zhang T, Heginbottom JA, Barry RG, Brown J (2000) Further statistics on the distribution of permafrost and ground-ice distribution in the northern hemisphere. Polar Geogr 23:132–154

    Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565

    CAS  Google Scholar 

  • Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF, Chapin FS, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277:800–802

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hauck .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauck, M., Leuschner, C., Homeier, J. (2019). Globaler Klimawandel: die Grundlagen. In: Klimawandel und Vegetation - Eine globale Übersicht. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59791-0_1

Download citation

Publish with us

Policies and ethics