Skip to main content

Neuere Ansätze im Neurofeedbacktraining

  • Chapter
  • First Online:
  • 3602 Accesses

Zusammenfassung

Durch den rasanten Fortschritt in der Computertechnologie – der sich sowohl in der Hardware als auch in der Softwareentwicklung in immer schnelleren Rechnern mit größeren Speicherkapazitäten, besserer visueller Darstellung des Feedbacks und komplexen Softwaremodulen widerspiegelt – ist es seit wenigen Jahren möglich geworden, auch neue, aufwändige Bio- und Neurofeedbackanwendungen in den therapeutischen Praxen einzusetzen.

Unter Mitarbeit von Patricia Dornuf und Monique Breithaupt-Peters

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Bei Brainmaster bzw. in der Abbildung

Weiterführende Literatur

Allgemein

  • Sherlin L, Arns M, Lubar J, Sokhadze E (2010) A position paper on Neurofeedback for the treatment of ADHD. J Neurotherapy 14(2):66–78

    Google Scholar 

QEEG

  • Collura TF (2013) Technical foundations of neurofeedback, 1. Aufl. Routledge, New York

    Google Scholar 

  • Hoffman DA, Lubar JF, Thatcher RW, Sterman B, Rosenfeld P, Striefel S, Trudeau D, Stockdale S (1999) Limitations of the American Academy of Neurology and American Clinical Neurophysiology Society paper on qEEG. J Neurophysiol Clin Neurosci 11:401–407

    CAS  Google Scholar 

  • Thatcher RW, Lubar JF (2009) History of the scientific standards of QEEG normative databases. Introd Quant EEG Neurofeedback 2009:29–59. https://doi.org/10.1016/b978-0-12-374534-7.00002-2

    Article  Google Scholar 

  • Thatcher RW, Walker R, Biver C, North D, Curtin R (2003) Sensitivity and specificity of an EEG normative database: validation and clinikcal correlation. J Neurotherapy 7(3/4):87–121

    Google Scholar 

Z-Wert-Training

  • Collura TF (2008a) Whole-head normalization using live Z-scores for connectivity training (Part 2). NeuroConnections Newsl:9–12

    Google Scholar 

  • Collura TF (2008b) Whole-head normalization using live Z-scores for connectivity training, Part 1. NeuroConnections Newsl 18–19 (S 12, 15)

    Google Scholar 

  • Collura TF (2009) Neuronal dynamics in relation to normative electroencephalography assessment and training. Biofeedback 36:134–139

    Google Scholar 

  • Collura TF, Guan J, Tarrant J, Bailey J, Starr F (2010) EEG biofeedback case studies using live Z-score training and a normative database. J Neurotherapy 14(1):22–46

    Google Scholar 

  • Smith M (2008) A father finds a solution: Z-score training. NeuroConnections Newsl 24–25 (S 22)

    Google Scholar 

  • Thatcher RW (2008) Z-score EEG biofeedback: conceptual foundations. NeuroConnections Newsl 20 (S 9, 11)

    Google Scholar 

LORETA-Neurofeedback

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. In ihren Principien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network – anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Google Scholar 

  • Cannon R, Lubar J (2007) EEG spectral power and coherence: Differentiating effects of spatial-specific neuro-operant learning (SSNOL) utilizing LORETA neurofeedback training in the anterior cingulate and bilateral dorsolateral prefrontal cortices. J Neurotherapy 11(3):25–44

    Google Scholar 

  • Cannon R, Lubar J, Thornton K, Wilson S, Congedo M (2005) Limbic beta activation and LORETA: can hippocampal and related limbic activity be recorded and changes visualized using LORETA in an affective memory condition? J Neurotherapy 8(4):5–24

    Google Scholar 

  • Cannon R, Lubar J, Gerke A, Thornton K, Hutchens T, McCammon V (2006) EEG spectral-power and coherence: LORETA neurofeedback training in the anterior cingulate gyrus. J Neurotherapy 10(1):5–31

    Google Scholar 

  • Cannon R, Lubar J, Congedo M, Thornton K, Towler K, Hutchens T (2007) The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. Int J Neurosci 117(3):337–357

    PubMed  Google Scholar 

  • Cannon R, Lubar J, Sokhadze E, Baldwin D (2008) LORETA neurofeedback for addiction and the possible neurophysiology of psychological processes influenced: a case study and region of interest analysis of LORETA neurofeedback in right anterior cingulate cortex. J Neurotherapy 12(4):227–241

    Google Scholar 

  • Cannon R, Congredo M, Lubar J, Hutchens T (2009) Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. Int J Neurosci 119(3):404–441

    PubMed  Google Scholar 

  • Congedo M, Lubar JF, Joffe D (2004) Low-resolution electromagnetic tomography neurofeedback. IEEE Trans Neural Syst Rehabil Eng 12(4):387–397

    PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. https://doi.org/10.1371/journal.pbio.0060159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebb D (1949) The organisation of behaviour. Wiley, New York

    Google Scholar 

  • Jatoi MA, Kamel N, Malik AS, Faye I (2014) EEG based brain source localization comparison of sLORETA and eLORETA. Australas Phys Eng Sci Med 37:713–721

    PubMed  Google Scholar 

  • Koberda JL (2012) Autistic spectrum disorder (ASD) as a potential target of Z-score LORETA neurofeedback. The Neuroconnection- winter 2012, edition (ISNR), S 24

    Google Scholar 

  • Koberda JL, Moses A, Koberda L, Koberda P (2012) Cognitive enhancement using19-electrode Z-score neurofeedback. J Neurotherapy 16(3):224–230

    Google Scholar 

  • Koberda JL, Koberda L. Koberda P. Moses A. Bienkiewicz A. (2013a) Alzheimer’s dementia as a potential targer of Z-score LORETA 19-electrode neurofeedback. Neuroconnection, S 30–32, Winter 2013

    Google Scholar 

  • Koberda JL, Koberda P, Bienkiewicz A, Moses A, Koberda L (2013b) Pain management using 19-electrode Z-score LORETA neurofeedback. J Neurotherapy 17:179–190

    Google Scholar 

  • Koberda JL, Koberda P, Moses A, Winslow J, Bienkiewicz A, Koberda L (2014a) Z-score LORETA Neurofeedback as a potential therapy of ADHD. –summer-Special Edition-Biofeedback Magazine

    Google Scholar 

  • Koberda JL, Koberda P, Moses A, Winslow J, Bienkiewicz A, Koberda L (2014b) Z-score LORETA Neurofeedback as a Potential Therapy in Depression and Anxiety. Spring-Neuroconnection, S 52–55

    Google Scholar 

  • Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037

    PubMed  PubMed Central  Google Scholar 

  • Leong SL, Vanneste S, Lim J, Smith M, Manning P, De Ridder D (2018) A randomised, double-blind, placebo-controlled parallel trial of closed-loop infraslow brain training in food addiction. Sci Rep 8:11659. https://doi.org/10.1038/s41598-018-30181-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubar J, Congedo M, Askew JH (2003) Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. Int J Psychophysiol 49(3):175–185

    PubMed  Google Scholar 

  • Mille KJ, Weaver KE, Ojemann JG (2009) Direct electrophysiological measurement of human default network areas. PNAS 106(29):12174

    Google Scholar 

  • Palva JM, Palva S (2012) Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62(4):2201–2211

    PubMed  Google Scholar 

  • Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411. https://doi.org/10.1126/science.1238411

    Article  CAS  Google Scholar 

  • Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagnetism 1(1):75–86

    Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    Google Scholar 

  • Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv: 0710.3341. http://arxiv.org/pdf/0710.3341

  • Pascual-Marqui RD (2009) Theory of the EEG inverse problem. In: Tong S, Thakor NV (Hrsg) Quantitative EEG analysis: methods and clinical applications. Artech House, Boston, S 121–140

    Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65

    CAS  Google Scholar 

  • Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci 369(1952):3768–3784

    PubMed  Google Scholar 

  • Pascual-Marqui RD, Biscay R, Bosch-Bayard J, Lehmann D, Kochi K, Yamada N, Kinoshita T, Sadato, N (2014a) Isolated effective coherence (iCoh): causal information flow excluding indirect paths. arXiv preprint arXiv:1402.4887. http://arxiv.org/abs/1402.4887

  • Pascual-Marqui RD, Biscay R, Bosch-Bayard J, Lehmann D, Kochi K, Yamada N, Kinoshita T, Sadato N (2014b) Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh). Front Hum Neurosci 8, 448 https://doi.org/10.3389/fnhum.2014.00448.eCollection2014.

  • Pascual-Marqui, Faber, Ikeda, Ishii, Kinoshita, Kitaura, Kochi, Milz, Nishida, Yoshimura (2017) The cross-frequency mediation mechanism of intracortical information transactions. arxiv.org/abs/1703.07654. https://doi.org/10.1101/119362

  • Petersen SE, Sporns O (2015) Brain networks and cognitive architectures. Neuron 88(1):207–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090

    Google Scholar 

  • Thatcher RW (2008) Z-score EEG biofeedback: conceptual foundations. NeuroConnections Newsl 20 (S 9, 11)

    Google Scholar 

Phänotyp-geleitetes Neurofeedbacktraining

  • Arns M, Gunkelman J, Breteler M, Spronk D (2008) EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J Integr Neurosci 7:421–438

    PubMed  Google Scholar 

  • Coben R, Linden M, Myers TE (2010) Neurofeedback for autistic spectrum disorder: a review of literature. Appl Psychophysiol Biofeedback 35:83–105

    PubMed  Google Scholar 

  • Falkai P, Wittchen HU (2018) Diagnostisches und statistisches Manual Psychischer Störungen DSM-5. Hogrefe.

    Google Scholar 

  • Gunkelman J (2006) Transcend the DSM using phenotypes. Biofeedback 34(3):95–98

    Google Scholar 

  • Johnstone J, Gunkelman J, Lunt J (2005) Clinical database development: characterization of EEG phenotypes. Clin EEG Neurosci 36(2):99–107

    CAS  PubMed  Google Scholar 

Neurostimulation

  • Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3616807

    PubMed  PubMed Central  Google Scholar 

  • Antal A, Paulus W (2013) Transcranial alternating current stimulation (tACS). Front Hum Neurosci 7:317

    PubMed  PubMed Central  Google Scholar 

  • Aust S, Palm U, Padberg F, Bajbouj M (2015) Transkranielle Gleichstromstimulation bei depressiven Störungen. Nervenarzt 86:1492–1499

    CAS  PubMed  Google Scholar 

  • Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas A, Kronberg G, Truong D, Boggio P, Brunoni A, Charvet L, Fregni F, Frisch B, Gillick B, Hamilton R, Hampstead B, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche M, Reis J, Richardson J, Rotenberg A, Turkeltaub P, Woods A (2016) Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9:641–661

    PubMed  PubMed Central  Google Scholar 

  • Das S, Holland P, Frens MA, Donchin O (2016) Impact of transcranial direct current stimulation (tDCS) on neuronal functions. Front Neurosci 10:550

    PubMed  PubMed Central  Google Scholar 

  • Funk R (2017) Does electromagnetic therapy meet an equivalent counterpart within the organism? J Transl Sci 3:1–6

    Google Scholar 

  • Hamblin M (2016) Shining light on the head: photobiomodulation for brain disorders. Biochom Biophys Acta Clin 6:113–124

    Google Scholar 

  • Hennessy M, Hamblin M (2016) Photobiomodulation and the brain: a new paradigm. J Opt 19:013003

    PubMed  PubMed Central  Google Scholar 

  • Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A (2016) Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study. Neuroimage 140:174–187. https://doi.org/10.1016/j.neuroimage.2016.02.015

    Article  PubMed  Google Scholar 

  • Martiny K, Lunde M, Bech P (2010) Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression. Biol Psychiatry 68:163–169. https://doi.org/10.1016/j.biopsych.2010.02.017

    Article  PubMed  Google Scholar 

  • Matsumoto H, Ugawa Y (2016) Adverse events of tDCS and tACS: a review. Clin Neurophysiol Pract 2:19–25. https://doi.org/10.1016/j.cnp.2016.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, Hirase H (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:11100. https://doi.org/10.1038/ncomms11100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsche M, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palm U, Reisinger E, Keeser D, Kuo M, Pogarell O, Leicht G, Mulert C, Nitsche M, Padberg F (2013) Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimul 6:690–695

    PubMed  Google Scholar 

  • Robertson JA, Théberge J, Weller J, Drost DJ, Prato FS, Thomas AW (2009) Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans. J Roy Soc Interf 7:467–473

    Google Scholar 

  • Roche N, Geiger M, Bussel B (2015) Mechanisms underlying the effects of transcranial direct current stimulation. Ann Phys Rehabil Med 58:214–219. https://doi.org/10.1016/j.rehab.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  • Vosskuhl J, Strüber D, Herrmann CS (2018) Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci 12:211. https://doi.org/10.3389/fnhum.2018.00211

    Article  PubMed  PubMed Central  Google Scholar 

  • Woods A, Antal A, Bikson M, Boggio P, Brunoni A, Celnik P, Cohen L, Fregni F, Herrmann CS, Kappenman E, Knotkova H, Liebetanz D, Miniussi C, Miranda P, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche M (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 127:1031–1048

    CAS  Google Scholar 

HEG-Biofeedback

  • Carmen JA (2004) Passive infrared hemoencephalography: four years and 100 migraines. J Neurotherapy 8(3):23–51

    Google Scholar 

  • Coben R, Pudolsky I (2007) Infrared imaging and neurofeedback: initial reliability and validity. J Neurotherapy 11(3):3–13

    Google Scholar 

  • Friedes D, Aberbach L (2003) Exploring hemispheric differences in infrared brain emissions. J Neurotherapy 8(3):53–61

    Google Scholar 

  • Mize W (2004) Hemoencephalography a new therapy for attention deficit hyperactivity disorder (ADHD): case report. J Neurotherapy 8(3):77–97

    Google Scholar 

  • Sherrill R (2004) Effects of hemoencephalography (HEG) training at three prefrontal locations using EEG ratios at Cz. J Neurotherapy 8(3):63–76

    Google Scholar 

  • Toomim H, Mize W, Kwong PC, Toomim M, Marsh R, Kozlowski GP, Kimball M, Remond A (2004) Intentional increase of cerebral blood oxygenation using hemoencephalography (HEG). J Neurotherapy 8(3):5–21

    Google Scholar 

fMRT-Neurofeedback

  • Bray S, Shimojo S, O’Doherty JP (2007) Direct instrumental conditioning of neural activity using functional magnetic resonance imagingderived reward feedback. J Neurosci 27:7498–7507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, Grodd W, Birbaumer N (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35:1238–1246

    Google Scholar 

  • Caria A, Sitaram R, Veit R, Begliomini C, Birbaumer N (2010) Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol Psychiatry 68(5):425–432

    PubMed  Google Scholar 

  • DeCharms RC (2007) Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci 11:473–481

    PubMed  Google Scholar 

  • DeCharms RC (2008) Applications of real-time fMRI. Nat Neurosci 9:720–729

    CAS  Google Scholar 

  • DeCharms RC, Christoff K, Glover G, Pauly J, Whitfield S, Gabrieli J (2004) Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21:436–443

    PubMed  Google Scholar 

  • DeCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JD, Mackey SC (2005) Control over brain activation and pain learned by using realtime functional MRI. Proc Natl Acad Sci 102:18626–18631

    CAS  PubMed  Google Scholar 

  • Fetz EE (2007) Volitional control of neural activity: implications for brain-computer interfaces. J Physiol 579:571–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston SJ, Boehm SG, Healy D, Goebel R, Linden DEJ (2010) Neurofeedback: a promising tool for the self-regulation of emotion networks. Neuroimage 49(1):1066–1072

    CAS  PubMed  Google Scholar 

  • Rota G, Sitaram R, Veit R, Erb M, Weiskopf N, Dogil G, Birbaumer N (2009) Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Hum Brain Mapp 30:1605–1614

    PubMed  Google Scholar 

  • Sitaram R, Caria A, Veit R, Gaber T, Ruiz S, Birbaumer N (2014) Volitional control of the anterior insula in criminal psychopaths using real-time fMRI neurofeedback: a pilot study. Front Behav Neurosci 8:344

    PubMed  PubMed Central  Google Scholar 

  • Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19:577–586

    PubMed  Google Scholar 

  • Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, Mathiak K (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 98:357–373

    PubMed  Google Scholar 

  • Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, Goebel R, Birbaumer N, Deichmann R, Mathiak K (2007) Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 25:989–1003

    PubMed  Google Scholar 

  • Yoo S, Jolesz FA (2002) Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13:1377–1381

    PubMed  Google Scholar 

  • Yoo S, O’Leary H, Fairneny T, Chen N, Panych L, Park H, Jolesz F (2006) Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. Neuroreport 17:1273–1278

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Michael Haus .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haus, KM. et al. (2020). Neuere Ansätze im Neurofeedbacktraining. In: Praxisbuch Biofeedback und Neurofeedback. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59720-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59720-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59719-4

  • Online ISBN: 978-3-662-59720-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics