Advertisement

HI Absorption in the Intergalactic Medium

  • J. Xavier ProchaskaEmail author
Chapter
  • 304 Downloads
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 46)

Abstract

We review studies of the intergalactic medium (IGM) via HI absorption with emphasis on the decades of previous research with quasar absorption line studies. The chapter begins with a historical perspective and then offers a pedagogical description of the quantum mechanics underlying the Lyman series and Lyman continuum opacity of the HI atom. We describe the manifestation of these opacities in absorption spectroscopy and the challenges related to normalization of quasar emission. Standard measurement techniques (equivalent width, line-profile fitting) are introduced. We then introduce the \(N_\mathrm{HI}\) frequency distribution \(f(N_\mathrm{HI})\) and efforts to constrain this distribution across cosmic time with emphasis on the optically thin Ly\(\alpha \) forest. A discussion of optically thick gas (Lyman limit systems and damped Ly\(\alpha \) systems) and its relation to the mean free path is presented. Online presentations and Python notebooks supplement this chapter with examples, a review of modern work, and thoughts on future progress. See https://github.com/profxj/SaasFee2016 for additional resources.

Notes

Acknowledgements

The author acknowledges the efforts of the IGM community which he has attempted to summarize in this Chapter. Without a doubt, however, many important additional works were not recognized.

References

  1. 1.
    Altay, G., Theuns, T., Schaye, J., Crighton, N.H.M., Dalla Vecchia, C.: Through thick and thin: H I absorption in cosmological simulations. ApJ 737, L37 (2011).  https://doi.org/10.1088/2041-8205/737/2/L37, arXiv:1012.4014ADSGoogle Scholar
  2. 2.
    Bahcall, J.N.: Phenomenological limits on the absorbing regions of quasi-stellar sources. ApJ 149, L7 (1967).  https://doi.org/10.1086/180041ADSCrossRefGoogle Scholar
  3. 3.
    Bahcall, J.N., Peebles, P.J.E.: Statistical tests for the origin of absorption lines observed in quasi-stellar sources. ApJ  156, L7+ (1969)Google Scholar
  4. 4.
    Bahcall, J.N., Salpeter, E.E.: Absorption lines in the spectra of distant sources. ApJ 144, 847 (1966).  https://doi.org/10.1086/148675ADSCrossRefGoogle Scholar
  5. 5.
    Bahcall, J.N., Spitzer, L.J.: Absorption lines produced by Galactic Halos. ApJ 156, L63 (1969)ADSGoogle Scholar
  6. 6.
    Bahcall, J.N., Wolf, R.A.: Fine-structure transitions. ApJ  152, 701–+ (1968)ADSGoogle Scholar
  7. 7.
    Bajtlik, S., Duncan, R.C., Ostriker, J.P.: Quasar ionization of Lyman-alpha clouds - the proximity effect, a probe of the ultraviolet background at high redshift. ApJ 327, 570–583 (1988).  https://doi.org/10.1086/166217ADSCrossRefGoogle Scholar
  8. 8.
    Becker, G.D., Hewett, P.C., Worseck, G., Prochaska, J.X.: A refined measurement of the mean transmitted flux in the Ly\(\alpha \) forest over \(2 < z < 5\) using composite quasar spectra. MNRAS 430, 2067–2081 (2013).  https://doi.org/10.1093/mnras/stt031, arXiv:1208.2584ADSGoogle Scholar
  9. 9.
    Bergeron, J., Boisse, P.: Properties of the galaxies giving rise to MgII quasar absorption systems. Adv. Space Res. 11, 241–244 (1991).  https://doi.org/10.1016/0273-1177(91)90496-7ADSCrossRefGoogle Scholar
  10. 10.
    Boksenberg, A., Carswell, R.F., Smith, M.G., Whelan, J.A.J.: The absorption-line spectrum of Q 1246–057. MNRAS 184, 773–782 (1978).  https://doi.org/10.1093/mnras/184.4.773ADSCrossRefGoogle Scholar
  11. 11.
    Braun, R.: Cosmological evolution of atomic gas and implications for 21 cm H I absorption. ApJ 749, 87 (2012).  https://doi.org/10.1088/0004-637X/749/1/87, arXiv:1202.1840ADSGoogle Scholar
  12. 12.
    Brown, R.L., Roberts, M.S.: 21-centimeter absorption at z = 0.692 in the Quasar 3c 286. ApJ 184, L7 (1973).  https://doi.org/10.1086/181276ADSGoogle Scholar
  13. 13.
    Burbidge, E.M., Lynds, C.R., Burbidge, G.R.: On the measurement and interpretation of absorption features in the spectrum of the quasi-stellar object 3c 191. ApJ 144, 447 (1966).  https://doi.org/10.1086/148629ADSCrossRefGoogle Scholar
  14. 14.
    Busca, N.G., Delubac, T., Rich, J., Bailey, S., Font-Ribera, A., Kirkby, D., Le Goff, J.M., Pieri, M.M., Slosar, A., Aubourg, É., Bautista, J.E., Bizyaev, D., Blomqvist, M., Bolton, A.S., Bovy, J., Brewington, H., Borde, A., Brinkmann, J., Carithers, B., Croft, R.A.C., Dawson, K.S., Ebelke, G., Eisenstein, D.J., Hamilton, J.C., Ho, S., Hogg, D.W., Honscheid, K., Lee, K.G., Lundgren, B., Malanushenko, E., Malanushenko, V., Margala, D., Maraston, C., Mehta, K., Miralda-Escudé, J., Myers, A.D., Nichol, R.C., Noterdaeme, P., Olmstead, M.D., Oravetz, D., Palanque-Delabrouille, N., Pan, K., Pâris, I., Percival, W.J., Petitjean, P., Roe, N.A., Rollinde, E., Ross, N.P., Rossi, G., Schlegel, D.J., Schneider, D.P., Shelden, A., Sheldon, E.S., Simmons, A., Snedden, S., Tinker, J.L., Viel, M., Weaver, B.A., Weinberg, D.H., White, M., Yèche, C., York, D.G.: Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS quasars. A&A 552, A96 (2013).  https://doi.org/10.1051/0004-6361/201220724, arXiv:1211.2616Google Scholar
  15. 15.
    Cooksey, K.L., Thom, C., Prochaska, J.X., Chen, H.: The last eight-billion years of intergalactic C IV evolution. ApJ 708, 868–908 (2010).  https://doi.org/10.1088/0004-637X/708/1/868, arXiv:0906.3347ADSGoogle Scholar
  16. 16.
    Davé, R., Tripp, T.M.: The statistical and physical properties of the low-redshift LY\(\alpha \) forest observed with the hubble space telescope/STIS. ApJ 553, 528–537 (2001).  https://doi.org/10.1086/320977, arXiv:astro-ph/0101419ADSGoogle Scholar
  17. 17.
    Dekel, A., Birnboim, Y.: Galaxy bimodality due to cold flows and shock heating. MNRAS 368, 2–20 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10145.x. arXiv:astro-ph/0412300ADSCrossRefGoogle Scholar
  18. 18.
    Duncan, R.C., Ostriker, J.P., Bajtlik, S.: Voids in the Ly-alpha forest. ApJ 345, 39–51 (1989).  https://doi.org/10.1086/167879CrossRefGoogle Scholar
  19. 19.
    Fall, S.M., Pei, Y.C.: Obscuration of quasars by dust in damped Lyman-alpha systems. ApJ 402, 479–492 (1993).  https://doi.org/10.1086/172151ADSCrossRefGoogle Scholar
  20. 20.
    Faucher-Giguère, C.A., Kereš, D.: The small covering factor of cold accretion streams. MNRAS 412, L118–L122 (2011).  https://doi.org/10.1111/j.1745-3933.2011.01018.x, 1011.1693ADSGoogle Scholar
  21. 21.
    Faucher-Giguère, C.A., Lidz, A., Hernquist, L., Zaldarriaga, M.: A flat photoionization rate at 2 \(<\)= z \(<\)= 4.2: evidence for a stellar-dominated UV background and against a decline of cosmic star formation beyond \(z \sim 3\). ApJ 682, L9 (2008).  https://doi.org/10.1086/590409, arXiv:0806.0372ADSGoogle Scholar
  22. 22.
    Faucher-Giguère, C.A., Prochaska, J.X., Lidz, A., Hernquist, L., Zaldarriaga, M.: A direct precision measurement of the intergalactic Ly\(\alpha \) opacity at \(2 \le z \le 4.2\). ApJ 681, 831–855 (2008).  https://doi.org/10.1086/588648. arXiv:0709.2382ADSGoogle Scholar
  23. 23.
    Faucher-Giguère, C.A., Lidz, A., Zaldarriaga, M., Hernquist, L.: A new calculation of the ionizing background spectrum and the effects of He II reionization. ApJ 703, 1416–1443 (2009).  https://doi.org/10.1088/0004-637X/703/2/1416, arXiv:0901.4554ADSGoogle Scholar
  24. 24.
    Field, G.B.: An attempt to observe neutral hydrogen between the galaxies. ApJ 129, 525 (1959).  https://doi.org/10.1086/146652ADSCrossRefGoogle Scholar
  25. 25.
    Font-Ribera, A., Miralda-Escudé, J., Arnau, E., Carithers, B., Lee, K.G., Noterdaeme, P., Pâris, I., Petitjean, P., Rich, J., Rollinde, E., Ross, N.P., Schneider, D.P., White, M., York, D.G.: The large-scale cross-correlation of Damped Lyman alpha systems with the Lyman alpha forest: first measurements from BOSS. JCAP 11, 059 (2012).  https://doi.org/10.1088/1475-7516/2012/11/059, arXiv:1209.4596Google Scholar
  26. 26.
    Fumagalli, M., Prochaska, J.X., Kasen, D., Dekel, A., Ceverino, D., Primack, J.R.: Absorption-line systems in simulated galaxies fed by cold streams. MNRAS 418, 1796–1821 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19599.x, arXiv:1103.2130ADSGoogle Scholar
  27. 27.
    Fumagalli, M., O’Meara, J.M., Prochaska, J.X., Worseck, G.: Dissecting the properties of optically thick hydrogen at the peak of cosmic star formation history. ApJ 775, 78 (2013).  https://doi.org/10.1088/0004-637X/775/1/78, arXiv:1308.1101ADSGoogle Scholar
  28. 28.
    Fynbo, J.P.U., Jakobsson, P., Prochaska, J.X., Malesani, D., Ledoux, C., de Ugarte, Postigo A., Nardini, M., Vreeswijk, P.M., Wiersema, K., Hjorth, J., Sollerman, J., Chen, H., Thöne, C.C., Björnsson, G., Bloom, J.S., Castro-Tirado, A.J., Christensen, L., De Cia, A., Fruchter, A.S., Gorosabel, J., Graham, J.F., Jaunsen, A.O., Jensen, B.L., Kann, D.A., Kouveliotou, C., Levan, A.J., Maund, J., Masetti, N., Milvang-Jensen, B., Palazzi, E., Perley, D.A., Pian, E., Rol, E., Schady, P., Starling, R.L.C., Tanvir, N.R., Watson, D.J., Xu, D., Augusteijn, T., Grundahl, F., Telting, J., Quirion, P.: Low-resolution spectroscopy of gamma-ray burst optical afterglows: biases in the swift sample and characterization of the absorbers. ApJS 185, 526–573 (2009).  https://doi.org/10.1088/0067-0049/185/2/526, arXiv:0907.3449ADSGoogle Scholar
  29. 29.
    Gardner, J.P., Katz, N., Hernquist, L., Weinberg, D.H.: Simulations of Damped Ly\(\alpha \) and lyman limit absorbers in different cosmologies: implications for structure formation at high redshift. ApJ 559, 131–146 (2001).  https://doi.org/10.1086/322403ADSCrossRefGoogle Scholar
  30. 30.
    Giallongo, E., Grazian, A., Fiore, F., Fontana, A., Pentericci, L., Vanzella, E., Dickinson, M., Kocevski, D., Castellano, M., Cristiani, S., Ferguson, H., Finkelstein, S., Grogin, N., Hathi, N., Koekemoer, A.M., Newman, J.A., Salvato, M.: Faint AGNs at \(z > 4\) in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe. A&A 578, A83 (2015).  https://doi.org/10.1051/0004-6361/201425334, arXiv:1502.02562ADSGoogle Scholar
  31. 31.
    Gunn, J.E., Peterson, B.A.: On the density of neutral hydrogen in intergalactic space. ApJ 142, 1633–1641 (1965).  https://doi.org/10.1086/148444ADSCrossRefGoogle Scholar
  32. 32.
    Haardt, F., Madau, P.: Radiative transfer in a clumpy universe. II. The ultraviolet extragalactic background. ApJ  461, 20–+ (1996).  https://doi.org/10.1086/177035, arXiv:astro-ph/9509093ADSGoogle Scholar
  33. 33.
    Hui, L., Gnedin, N.Y.: Equation of state of the photoionized intergalactic medium. MNRAS  292, 27–+ (1997). arXiv:astro-ph/9612232ADSGoogle Scholar
  34. 34.
    Hui, L., Rutledge, R.E.: The B distribution and the velocity structure of absorption peaks in the LYalpha forest. ApJ 517, 541–548 (1999).  https://doi.org/10.1086/307202, arXiv:astro-ph/9709100ADSGoogle Scholar
  35. 35.
    Inoue, A.K., Shimizu, I., Iwata, I., Tanaka, M.: An updated analytic model for attenuation by the intergalactic medium. MNRAS 442, 1805–1820 (2014).  https://doi.org/10.1093/mnras/stu936, arXiv:1402.0677ADSGoogle Scholar
  36. 36.
    Kereš, D., Katz, N., Fardal, M., Davé, R., Weinberg, D.H.: Galaxies in a simulated \(\Lambda \)CDM Universe - I. Cold mode and hot cores. MNRAS 395, 160–179 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14541.x, arXiv:0809.1430ADSGoogle Scholar
  37. 37.
    Kim, T.S., Partl, A.M., Carswell, R.F., Müller, V.: The evolution of H I and C IV quasar absorption line systems at \(1.9 < z < 3.2\). A&A 552, A77 (2013).  https://doi.org/10.1051/0004-6361/201220042, arXiv:1302.6622Google Scholar
  38. 38.
    Kirkman, D., Tytler, D.: Intrinsic properties of the z = 2.7 LY alpha forest from keck spectra of quasar HS 1946+7658. ApJ 484, 672–+ (1997).  https://doi.org/10.1086/304371, arXiv:astro-ph/9701209ADSGoogle Scholar
  39. 39.
    Kirkman, D., Tytler, D., Suzuki, N., Melis, C., Hollywood, S., James, K., So, G., Lubin, D., Jena, T., Norman, M.L., Paschos, P.: The HI opacity of the intergalactic medium at redshifts \(1.6 < z < 3.2\). MNRAS 360, 1373–1380 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09126.x, arXiv:astro-ph/0504391ADSGoogle Scholar
  40. 40.
    Lee, H.W.: Asymmetric deviation of the scattering cross section around Ly\(\alpha \) by atomic hydrogen. ApJ 594, 637–641 (2003).  https://doi.org/10.1086/376867, arXiv:astro-ph/0308083ADSGoogle Scholar
  41. 41.
    Lee, K.G., Suzuki, N., Spergel, D.N.: Mean-flux-regulated principal component analysis continuum fitting of sloan digital sky survey Ly\(\alpha \) forest spectra. AJ 143, 51 (2012).  https://doi.org/10.1088/0004-6256/143/2/51, arXiv:1108.6080ADSGoogle Scholar
  42. 42.
    Lee, K.G., Hennawi, J.F., Stark, C., Prochaska, J.X., White, M., Schlegel, D.J., Eilers, A.C., Arinyo-i-Prats, A., Suzuki, N., Croft, R.A.C., Caputi, K.I., Cassata, P., Ilbert, O., Garilli, B., Koekemoer, A.M., Le Brun, V., Le Fèvre, O., Maccagni, D., Nugent, P., Taniguchi, Y., Tasca, L.A.M., Tresse, L., Zamorani, G., Zucca, E.: Ly\(\alpha \) Forest tomography from background galaxies: the first megaparsec-resolution large-scale structure map at z \(>\) 2. ApJ 795, L12 (2014).  https://doi.org/10.1088/2041-8205/795/1/L12, arXiv:1409.5632ADSGoogle Scholar
  43. 43.
    Lee, K.G., Hennawi, J.F., Spergel, D.N., Weinberg, D.H., Hogg, D.W., Viel, M., Bolton, J.S., Bailey, S., Pieri, M.M., Carithers, W., Schlegel, D.J., Lundgren, B., Palanque-Delabrouille, N., Suzuki, N., Schneider, D.P., Yèche, C.: IGM constraints from the SDSS-III/BOSS DR9 Ly\(\alpha \) forest transmission probability distribution function. ApJ 799, 196 (2015).  https://doi.org/10.1088/0004-637X/799/2/196, arXiv:1405.1072ADSGoogle Scholar
  44. 44.
    López, S., D’Odorico, V., Ellison, S.L., Becker, G.D., Christensen, L., Cupani, G., Denney, K.D., Pâris, I., Worseck, G., Berg, T.A.M., Cristiani, S., Dessauges-Zavadsky, M., Haehnelt, M., Hamann, F., Hennawi, J., Iršič, V., Kim, T.S., López, P., Lund Saust, R., Ménard, B., Perrotta, S., Prochaska, J.X., Sánchez-Ramírez, R., Vestergaard, M., Viel, M., Wisotzki, L.: XQ-100: a legacy survey of one hundred \(3.5 < z < 4.5\) quasars observed with VLT/X-shooter. A&A 594, A91 (2016).  https://doi.org/10.1051/0004-6361/201628161, arXiv:1607.08776Google Scholar
  45. 45.
    Lowenthal, J.D., Koo, D.C., Guzman, R., Gallego, J., Phillips, A.C., Faber, S.M., Vogt, N.P., Illingworth, G.D., Gronwall, C.: Keck spectroscopy of redshift Z approximately 3 galaxies in the hubble deep field. ApJ 481, 673–+ (1997).  https://doi.org/10.1086/304092, arXiv:astro-ph/9612239ADSGoogle Scholar
  46. 46.
    Lusso, E., Comastri, A., Simmons, B.D., Mignoli, M., Zamorani, G., Vignali, C., Brusa, M., Shankar, F., Lutz, D., Trump, J.R., Maiolino, R., Gilli, R., Bolzonella, M., Puccetti, S., Salvato, M., Impey, C.D., Civano, F., Elvis, M., Mainieri, V., Silverman, J.D., Koekemoer, A.M., Bongiorno, A., Merloni, A., Berta, S., Le Floc’h, E., Magnelli, B., Pozzi, F., Riguccini, L.: Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. MNRAS 425, 623–640 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21513.x, arXiv:1206.2642ADSGoogle Scholar
  47. 47.
    Lusso, E., Worseck, G., Hennawi, J.F., Prochaska, J.X., Vignali, C., Stern, J., O’Meara, J.M.: The first ultraviolet quasar-stacked spectrum at \(z {\sim } 2.4\) from WFC3. MNRAS 449, 4204–4220 (2015).  https://doi.org/10.1093/mnras/stv516, arXiv:1503.02075ADSGoogle Scholar
  48. 48.
    Madau, P.: Radiative transfer in a clumpy universe: the colors of high-redshift galaxies. ApJ 441, 18–27 (1995)ADSGoogle Scholar
  49. 49.
    Madau, P., Haardt, F.: Cosmic reionization after planck: could quasars do it all? ApJ 813, L8 (2015).  https://doi.org/10.1088/2041-8205/813/1/L8, arXiv:1507.07678ADSGoogle Scholar
  50. 50.
    McQuinn, M.: The evolution of the intergalactic medium. ARA&A 54, 313–362 (2016).  https://doi.org/10.1146/annurev-astro-082214-122355, arXiv:1512.00086ADSMathSciNetGoogle Scholar
  51. 51.
    Meiksin, A., Madau, P.: On the photoionization of the intergalactic medium by quasars at high redshift. ApJ 412, 34–55 (1993).  https://doi.org/10.1086/172898ADSCrossRefGoogle Scholar
  52. 52.
    Meiksin, A.A.: The physics of the intergalactic medium. Rev. Modern Phys. 81, 1405–1469 (2009).  https://doi.org/10.1103/RevModPhys.81.1405, arXiv:0711.3358ADSzbMATHGoogle Scholar
  53. 53.
    Miralda-Escudé, J., Cen, R., Ostriker, J.P., Rauch, M.: The Ly alpha forest from gravitational collapse in the cold dark matter + lambda model. ApJ  471:582–+ (1996).  https://doi.org/10.1086/177992, arXiv:astro-ph/9511013ADSGoogle Scholar
  54. 54.
    Miralda-Escudé, J., Haehnelt, M., Rees, M.J.: Reionization of the inhomogeneous universe. ApJ 530, 1–16 (2000).  https://doi.org/10.1086/308330, arXiv:astro-ph/9812306ADSGoogle Scholar
  55. 55.
    Møller, P., Jakobsen, P.: The Lyman continuum opacity at high redshifts - through the Lyman forest and beyond the Lyman valley. A&A 228, 299–309 (1990)ADSGoogle Scholar
  56. 56.
    Nestor, D.B., Shapley, A.E., Kornei, K.A., Steidel, C.C., Siana, B.: A refined estimate of the ionizing emissivity from galaxies at z \(\sim \)= 3: spectroscopic follow-up in the SSA22a field. ApJ 765, 47 (2013).  https://doi.org/10.1088/0004-637X/765/1/47, arXIv:1210.2393ADSGoogle Scholar
  57. 57.
    Noterdaeme, P., Petitjean, P., Carithers, W.C., Pâris, I., Font-Ribera, A., Bailey, S., Aubourg, E., Bizyaev, D., Ebelke, G., Finley, H., Ge, J., Malanushenko, E., Malanushenko, V., Miralda-Escudé, J., Myers, A.D., Oravetz, D., Pan, K., Pieri, M.M., Ross, N.P., Schneider, D.P., Simmons, A., York, D.G.: Column density distribution and cosmological mass density of neutral gas: sloan digital sky survey-III data release 9. A&A 547, L1 (2012).  https://doi.org/10.1051/0004-6361/201220259, arXiv:1210.1213ADSGoogle Scholar
  58. 58.
    O’Meara, J.M., Prochaska, J.X., Worseck, G., Chen, H.W., Madau, P.: The HST/ACS+WFC3 survey for lyman limit systems. II. Science. ApJ 765, 137 (2013).  https://doi.org/10.1088/0004-637X/765/2/137, arXiv:1204.3093ADSGoogle Scholar
  59. 59.
    O’Meara, J.M., Lehner, N., Howk, J.C., Prochaska, J.X., Fox, A.J., Swain, M.A., Gelino, C.R., Berriman, G.B., Tran, H.: The first data release of the KODIAQ survey. AJ 150, 111 (2015).  https://doi.org/10.1088/0004-6256/150/4/111, arXiv:1505.03529ADSGoogle Scholar
  60. 60.
    Ostriker, J.P., Cowie, L.L.: Galaxy formation in an intergalactic medium dominated by explosions. ApJ 243, L127–L131 (1981).  https://doi.org/10.1086/183458ADSCrossRefGoogle Scholar
  61. 61.
    Ostriker, J.P., Heisler, J.: Are cosmologically distant objects obscured by dust? - a test using quasars. ApJ 278, 1–10 (1984).  https://doi.org/10.1086/161762ADSCrossRefGoogle Scholar
  62. 62.
    Ostriker, J.P., Ikeuchi, S.: Physical properties of the intergalactic medium and the Lyman-alpha absorbing clouds. ApJ 268, L63–L68 (1983).  https://doi.org/10.1086/184030ADSCrossRefGoogle Scholar
  63. 63.
    Pâris, I., Petitjean, P., Rollinde, E., Aubourg, E., Busca, N., Charlassier, R., Delubac, T., Hamilton, J.C., Le Goff, J.M., Palanque-Delabrouille, N., Peirani, S., Pichon, C., Rich, J., Vargas-Magaña, M., Yèche, C.: A principal component analysis of quasar UV spectra at z \(\sim \) 3. A&A 530, A50 (2011).  https://doi.org/10.1051/0004-6361/201016233, arXiv:1104.2024Google Scholar
  64. 64.
    Penton, S.V., Shull, J.M., Stocke, J.T.: The local Ly\(\alpha \) forest. II. Distribution of H I absorbers, doppler widths, and Baryon content. ApJ 544, 150–175 (2000).  https://doi.org/10.1086/317179, arXiv:astro-ph/9911128ADSGoogle Scholar
  65. 65.
    Petitjean, P., Webb, J.K., Rauch, M., Carswell, R.F., Lanzetta, K.: Evidence for structure in the H I column density distribution of QSO absorbers. MNRAS 262, 499–505 (1993)ADSGoogle Scholar
  66. 66.
  67. 67.
    Press, W.H., Rybicki, G.B., Schneider, D.P.: Properties of high-redshift Lyman-alpha clouds. I - statistical analysis of the Schneider-Schmidt-Gunn quasars. ApJ 414, 64–81 (1993).  https://doi.org/10.1086/173057, arXiv:astro-ph/9303016ADSGoogle Scholar
  68. 68.
    Prochaska, J.X., Wolfe, A.M.: On the (Non)Evolution of H I gas in galaxies over cosmic time. ApJ 696, 1543–1547 (2009).  https://doi.org/10.1088/0004-637X/696/2/1543, arXiv:0811.2003ADSGoogle Scholar
  69. 69.
    Prochaska, J.X., Herbert-Fort, S., Wolfe, A.M.: The SDSS damped Ly\(\alpha \) survey: data release 3. ApJ 635, 123–142 (2005).  https://doi.org/10.1086/497287ADSCrossRefGoogle Scholar
  70. 70.
    Prochaska, J.X., Worseck, G., O’Meara, J.M.: A direct measurement of the intergalactic medium opacity to H I ionizing photons. ApJ 705, L113–L117 (2009).  https://doi.org/10.1088/0004-637X/705/2/L113, arXiv:0910.0009ADSGoogle Scholar
  71. 71.
    Prochaska, J.X., O’Meara, J.M., Worseck, G.: A definitive survey for lyman limit systems at z \(\sim \) 3.5 with the sloan digital sky survey. ApJ 718, 392–416 (2010).  https://doi.org/10.1088/0004-637X/718/1/392, arXiv:0912.0292ADSGoogle Scholar
  72. 72.
    Prochaska, J.X., Hennawi, J.F., Lee, K.G., Cantalupo, S., Bovy, J., Djorgovski, S.G., Ellison, S.L., Wingyee Lau, M., Martin, C.L., Myers, A., Rubin, K.H.R., Simcoe, R.A.: Quasars probing quasars. VI. Excess H I absorption within one proper Mpc of z \(\sim \) 2 quasars. ApJ 776, 136 (2013).  https://doi.org/10.1088/0004-637X/776/2/136, arXiv:1308.6222ADSGoogle Scholar
  73. 73.
    Prochaska, J.X., Hennawi, J.F., Simcoe, R.A.: A substantial mass of cool, metal-enriched gas surrounding the progenitors of modern-day ellipticals. ApJ 762, L19 (2013b).  https://doi.org/10.1088/2041-8205/762/2/L19, arXiv:1211.6131Google Scholar
  74. 74.
    Prochaska, J.X., Madau, P., O’Meara, J.M., Fumagalli, M.: Towards a unified description of the intergalactic medium at redshift z \(\sim \) 2.5. MNRAS 438, 476–486 (2014).  https://doi.org/10.1093/mnras/stt2218, arXiv:1310.0052ADSGoogle Scholar
  75. 75.
    Prochaska, J.X., Werk, J.K., Worseck, G., Tripp, T.M., Tumlinson, J., Burchett, J.N., Fox, A.J., Fumagalli, M., Lehner, N., Peeples, M.S., Tejos, N.: The COS-halos survey: metallicities in the low-redshift circumgalactic medium. ApJ 837, 169 (2017).  https://doi.org/10.3847/1538-4357/aa6007, arXiv:1702.02618ADSGoogle Scholar
  76. 76.
    Rahmati, A., Pawlik, A.H., Raicevic, M., Schaye, J.: On the evolution of the H I column density distribution in cosmological simulations. MNRAS 430, 2427–2445 (2013).  https://doi.org/10.1093/mnras/stt066, arXiv:1210.7808ADSGoogle Scholar
  77. 77.
    Ribaudo, J., Lehner, N., Howk, J.C.: A hubble space telescope study of Lyman limit systems: census and evolution. ApJ 736, 42–+ (2011).  https://doi.org/10.1088/0004-637X/736/1/42, arXiv:1105.0659ADSGoogle Scholar
  78. 78.
    Richards, G.T., Lacy, M., Storrie-Lombardi, L.J., Hall, P.B., Gallagher, S.C., Hines, D.C., Fan, X., Papovich, C., Vanden Berk, D.E., Trammell, G.B., Schneider, D.P., Vestergaard, M., York, D.G., Jester, S., Anderson, S.F., Budavári, T., Szalay, A.S.: Spectral energy distributions and multiwavelength selection of type 1 quasars. ApJS 166, 470–497 (2006).  https://doi.org/10.1086/506525, arXiv:astro-ph/0601558ADSGoogle Scholar
  79. 79.
    Robertson, J.G.: Quantifying resolving power in astronomical spectra. PASA 30, e048 (2013).  https://doi.org/10.1017/pasa.2013.26, arXiv:1308.0871
  80. 80.
    Rudie, G.C., Steidel, C.C., Shapley, A.E., Pettini, M.: The column density distribution and continuum opacity of the intergalactic and circumgalactic medium at redshift langzrang = 2.4. ApJ 769, 146 (2013).  https://doi.org/10.1088/0004-637X/769/2/146, arXiv:1304.6719ADSGoogle Scholar
  81. 81.
    Sargent, W.L.W., Young, P.J., Boksenberg, A., Tytler, D.: The distribution of Lyman-alpha absorption lines in the spectra of six QSOs - evidence for an intergalactic origin. ApJS 42, 41–81 (1980).  https://doi.org/10.1086/190644ADSCrossRefGoogle Scholar
  82. 82.
    Sargent, W.L.W., Steidel, C.C., Boksenberg, A.: A survey of Lyman-limit absorption in the spectra of 59 high-redshift QSOs. ApJS 69, 703–761 (1989).  https://doi.org/10.1086/191326ADSCrossRefGoogle Scholar
  83. 83.
    Schmidt, M.: 3C 273: a star-like object with large red-shift. Nature 197, 1040 (1963)ADSGoogle Scholar
  84. 84.
    Songaila, A., Cowie, L.L.: Approaching reionization: the evolution of the Ly \(\alpha \) forest from z=4 to z=6. AJ 123, 2183–2196 (2002).  https://doi.org/10.1086/340079, arXiv:astro-ph/0202165ADSGoogle Scholar
  85. 85.
    Steidel, C.C., Giavalisco, M., Pettini, M., Dickinson, M., Adelberger, K.L.: Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts \(z >3\). ApJ 462, L17+ (1996).  https://doi.org/10.1086/310029, arXiv:astro-ph/9602024ADSGoogle Scholar
  86. 86.
    Storrie-Lombardi, L.J., Irwin, M.J., McMahon, R.G.: APM \(z>4\) survey: distribution and evolution of high column density HI absorbers. MNRAS 282, 1330–1342 (1996). arXiv:astro-ph/9608146ADSGoogle Scholar
  87. 87.
    Suzuki, N.: Quasar spectrum classification with principal component analysis (PCA): emission lines in the Ly\(\alpha \) forest. ApJS 163, 110–121 (2006).  https://doi.org/10.1086/499272ADSCrossRefGoogle Scholar
  88. 88.
    Telfer, R.C., Zheng, W., Kriss, G.A., Davidsen, A.F.: The rest-frame extreme-ultraviolet spectral properties of quasi-stellar objects. ApJ 565, 773–785 (2002).  https://doi.org/10.1086/324689, arXiv:astro-ph/0109531ADSGoogle Scholar
  89. 89.
    Tytler, D.: QSO Lyman limit absorption. Nature 298, 427–432 (1982).  https://doi.org/10.1038/298427a0CrossRefGoogle Scholar
  90. 90.
    Tytler, D.: The distribution of QSO absorption system column densities - evidence for a single population. ApJ 321, 49–68 (1987).  https://doi.org/10.1086/165615ADSCrossRefGoogle Scholar
  91. 91.
    van de Voort, F., Schaye, J.: Properties of gas in and around galaxy haloes. MNRAS 423, 2991–3010 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20949.x, arXiv:1111.5039ADSGoogle Scholar
  92. 92.
    Vanden Berk, D.E., Richards, GT, Bauer, A., Strauss, M.A., Schneider, D.P., Heckman, T.M., York, D.G., Hall, P.B., Fan, X., Knapp, G.R., Anderson, S.F., Annis, J., Bahcall, N.A., Bernardi, M., Briggs, J.W., Brinkmann, J., Brunner, R., Burles, S., Carey, L., Castander, F.J., Connolly, A.J., Crocker, J.H., Csabai, I., Doi, M., Finkbeiner, D., Friedman, S., Frieman, J.A., Fukugita, M., Gunn, J.E., Hennessy, G.S., Ivezić, Ž., Kent, S., Kunszt, P.Z., Lamb, D.Q., Leger, R.F., Long, D.C., Loveday, J., Lupton, R.H., Meiksin, A., Merelli, A., Munn, J.A., Newberg, H.J., Newcomb, M., Nichol, R.C., Owen, R., Pier, J.R., Pope, A., Rockosi, C.M., Schlegel, D.J., Siegmund, W.A., Smee, S., Snir, Y., Stoughton, C., Stubbs, C., SubbaRao, M., Szalay, A.S., Szokoly, G.P., Tremonti, C., Uomoto, A., Waddell, P., Yanny, B., Zheng, W.: Composite quasar spectra from the sloan digital sky survey. AJ 122, 549–564 (2011).  https://doi.org/10.1086/321167ADSGoogle Scholar
  93. 93.
    Vogt, S.S, Allen, S.L., Bigelow, B.C., Bresee, L., Brown, B., Cantrall, T., Conrad, A., Couture, M., Delaney, C., Epps, H.W., Hilyard, D., Hilyard, D.F., Horn, E., Jern, N., Kanto, D., Keane, M.J., Kibrick, R.I., Lewis, J.W., Osborne, J., Pardeilhan, G.H., Pfister, T., Ricketts, T., Robinson, L.B., Stover, R.J., Tucker, D., Ward, J., Wei, M.Z.: HIRES: the high-resolution Echelle spectrometer on the Keck 10-m Telescope. In: Proceedings of the SPIE Instrumentation in Astronomy VIII, Crawford, D.L., Craine, E.R., (eds.), vol. 2198, pp 362–+ (1994)Google Scholar
  94. 94.
    Wolfe, A.M., Turnshek, D.A., Smith, H.E., Cohen, R.D.: Damped Lyman-alpha absorption by disk galaxies with large redshifts. I - The Lick survey. ApJS 61, 249–304 (1986).  https://doi.org/10.1086/191114ADSCrossRefGoogle Scholar
  95. 95.
    Wolfe, A.M., Lanzetta, K.M., Foltz, C.B., Chaffee, F.H.: The large bright QSO survey for damped LY alpha absorption systems. ApJ 454, 698–+ (1995).  https://doi.org/10.1086/176523ADSGoogle Scholar
  96. 96.
    Wolfe, A.M., Gawiser, E., Prochaska, J.X.: Damped Lya systems. ARA&A 43, 861–918 (2005)Google Scholar
  97. 97.
    Worseck, G., Prochaska, J.X., O’Meara, J.M., Becker, G.D., Ellison, S.L., Lopez, S., Meiksin, A., Ménard, B., Murphy, M.T., Fumagalli, M.: The Giant Gemini GMOS survey of z\(_{em}\)\(>\) 4.4 quasars - I. Measuring the mean free path across cosmic time. MNRAS 445, 1745–1760 (2014).  https://doi.org/10.1093/mnras/stu1827, 1402.4154ADSGoogle Scholar
  98. 98.
    Young, P.J., Sargent, W.L.W., Boksenberg, A., Carswell, R.F., Whelan, J.A.J.: A high-resolution study of the absorption spectrum of PKS 2126–158. ApJ 229, 891–908 (1979).  https://doi.org/10.1086/157024ADSCrossRefGoogle Scholar
  99. 99.
    Zheng, Z., Miralda-Escudé, J.: Self-shielding effects on the column density distribution of damped Ly\(\alpha \) systems. ApJ 568, L71–L74 (2002).  https://doi.org/10.1086/340330, arXiv:astro-ph/0201275ADSGoogle Scholar
  100. 100.
    Zwaan, M.A., van der Hulst, J.M., Briggs, F.H., Verheijen, M.A.W., Ryan-Weber, E.V.: Reconciling the local galaxy population with damped Lyman \(\alpha \) cross-sections and metal abundances. MNRAS 364, 1467–1487 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09698.x, arXiv:astro-ph/0510127ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UCO/Lick ObservatoryUC Santa CruzSanta CruzUSA

Personalised recommendations