Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications

  • Anindya Nag
  • Subhas Chandra MukhopadhyayEmail author


The chapter presents some of the significant research done on the utilization of nanoparticles to fabricate and implement flexible wearable sensors for health monitoring applications. The involvement of nanoparticles has greatly influenced the operation of wearable sensors in terms of reduction in time and cost. The electrical, mechanical, and thermal advantages of nanoparticles have imparted the flexible sensors to be deployed for detection of multiple physiological parameters associated with human beings. Along with the processed materials, the fabrication technique, and the uses of some of the nanoparticles-based flexible wearable sensors, the challenges associated with the current sensors and some of the future opportunities are also depicted in this chapter.


  1. 1.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:1–10CrossRefGoogle Scholar
  2. 2.
    Wang AZ et al (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198CrossRefGoogle Scholar
  3. 3.
    Yang Y et al (2017) Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res 10:1560–1583CrossRefGoogle Scholar
  4. 4.
    Bennett J et al (2017) Healthcare in the smart home: a study of past, present and future. Sustainability 9:840CrossRefGoogle Scholar
  5. 5.
    Nanotechnology in smart medical wearables. Available:
  6. 6.
    Nanotechnology in medical applications: global market 2017 – research and markets. Available:
  7. 7.
    Nag A et al (2017) Wearable flexible sensors: a review. IEEE Sensors J 17:3949–3960CrossRefGoogle Scholar
  8. 8.
    El-Ansary A, Faddah LM (2010) Nanoparticles as biochemical sensors. Nanotechnol Sci Appl 3:65CrossRefGoogle Scholar
  9. 9.
    Wang Y et al (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670CrossRefGoogle Scholar
  10. 10.
    Zhang Y et al (2017) Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl Mater Interfaces 9:35968–35976CrossRefGoogle Scholar
  11. 11.
    Nag A et al (2016) Tactile sensing from laser-ablated metallized PET films. IEEE Sensors J 17:7–13CrossRefGoogle Scholar
  12. 12.
    Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371CrossRefGoogle Scholar
  13. 13.
    Dobrzynska JA, Gijs MA (2012) Flexible polyimide-based force sensor. Sensors Actuators A Phys 173:127–135CrossRefGoogle Scholar
  14. 14.
    Kim DH et al (2012) Thin, flexible sensors and actuators as ‘instrumented’ surgical sutures for targeted wound monitoring and therapy. Small 8:3263–3268CrossRefGoogle Scholar
  15. 15.
    Wang H (2017) Development of a conformable electronic skin based on silver nanowires and PDMS. In: IOP conference series: materials science and engineering. p 012040Google Scholar
  16. 16.
    Zhou D et al (2017) Conformable pressure sensor array based on silver nanowires and PDMS for electronic skin application. Sens Lett 15:11–18CrossRefGoogle Scholar
  17. 17.
    Wu N et al (2015) Cellular polypropylene piezoelectric for human body energy harvesting and health monitoring. Adv Funct Mater 25:4788–4794CrossRefGoogle Scholar
  18. 18.
    Li W et al (2017) Sensitivity-enhanced wearable active voiceprint sensor based on cellular polypropylene piezoelectric. ACS Appl Mater Interfaces 9:23716–23722CrossRefGoogle Scholar
  19. 19.
    Zhao J et al (2015) A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofiber membrane. J Mater Chem A 3:24333–24337CrossRefGoogle Scholar
  20. 20.
    Muthukumar N et al (2017) Analysis of piezoresistive behavior of polyaniline-coated nylon Lycra fabrics for elbow angle measurement. J Text Inst 108:233–238Google Scholar
  21. 21.
    Savagatrup S et al (2015) Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater 25:427–436CrossRefGoogle Scholar
  22. 22.
    Honda W et al (2014) Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv Funct Mater 24:3299–3304CrossRefGoogle Scholar
  23. 23.
    Kulkarni M et al (2014) Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 111:111Google Scholar
  24. 24.
    Pessoa JC et al (2015) Vanadium compounds in medicine. Coord Chem Rev 301:24–48CrossRefGoogle Scholar
  25. 25.
    Rasmussen JW et al (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077CrossRefGoogle Scholar
  26. 26.
    Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7:2337–2361CrossRefGoogle Scholar
  27. 27.
    Park S et al (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752CrossRefGoogle Scholar
  28. 28.
    Rim YS et al (2015) Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 9:12174–12181CrossRefGoogle Scholar
  29. 29.
    Kim SY et al (2015) Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv Mater 27:4178–4185CrossRefGoogle Scholar
  30. 30.
    Meng Y et al (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331CrossRefGoogle Scholar
  31. 31.
    Boland CS et al (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8:8819–8830CrossRefGoogle Scholar
  32. 32.
    Shi J et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater 26:2078–2084CrossRefGoogle Scholar
  33. 33.
    Park JJ et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324CrossRefGoogle Scholar
  34. 34.
    Lee H et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566CrossRefGoogle Scholar
  35. 35.
    Meng B et al (2013) A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ Sci 6:3235–3240CrossRefGoogle Scholar
  36. 36.
    Fan F-R et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114CrossRefGoogle Scholar
  37. 37.
    Yang PK et al (2015) A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv Mater 27:3817–3824CrossRefGoogle Scholar
  38. 38.
    Chung SY et al (2012) All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater 24:6022–6027CrossRefGoogle Scholar
  39. 39.
    Shin S-H et al (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8:2766–2773CrossRefGoogle Scholar
  40. 40.
    Yao S, Zhu Y (2016) Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM 68:1145–1155CrossRefGoogle Scholar
  41. 41.
    Son D et al (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404CrossRefGoogle Scholar
  42. 42.
    Liu C et al (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRefGoogle Scholar
  43. 43.
    Yapici MK et al (2015) Graphene-clad textile electrodes for electrocardiogram monitoring. Sensors Actuators B Chem 221:1469–1474CrossRefGoogle Scholar
  44. 44.
    Yun Y-H et al (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9:9275–9299CrossRefGoogle Scholar
  45. 45.
    Myung S et al (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23:2221–2225CrossRefGoogle Scholar
  46. 46.
    Mishra RK et al (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors 2:553–561CrossRefGoogle Scholar
  47. 47.
    Pradhan D et al (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2:2409–2412CrossRefGoogle Scholar
  48. 48.
    Ahn CH et al (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173CrossRefGoogle Scholar
  49. 49.
    Peterson RD et al (2014) A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosens Bioelectron 56:320–327CrossRefGoogle Scholar
  50. 50.
    Choi C et al (2016) Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2:1006–1017CrossRefGoogle Scholar
  51. 51.
    Yi W (2015) Flexible fabric strain sensors. In: Tao X (ed) Handbook of smart textiles. Springer, Singapore, pp 293–316Google Scholar
  52. 52.
    Liu Z et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44:161–192CrossRefGoogle Scholar
  53. 53.
    Kim S-W et al (2017) A triple-mode flexible E-skin sensor interface for multi-purpose wearable applications. Sensors 18:78CrossRefGoogle Scholar
  54. 54.
    Seung W et al (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9:3501–3509CrossRefGoogle Scholar
  55. 55.
    Kim KN et al (2015) Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9:6394–6400CrossRefGoogle Scholar
  56. 56.
    Yeo SY et al (2017) Highly sensitive flexible pressure sensors based on printed organic transistors with centro-apically self-organized organic semiconductor microstructures. ACS Appl Mater Interfaces 9:42996–43003CrossRefGoogle Scholar
  57. 57.
    Liao C et al (2015) Flexible organic electronics in biology: materials and devices. Adv Mater 27:7493–7527CrossRefGoogle Scholar
  58. 58.
    Hou C et al (2014) Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater 26:5018–5024CrossRefGoogle Scholar
  59. 59.
    Sun Q et al (2015) Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater 27:3411–3417CrossRefGoogle Scholar
  60. 60.
    Hu W et al (2013) Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl Phys Lett 102:38Google Scholar
  61. 61.
    Mahdavi A et al (2008) A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci 105:2307–2312CrossRefGoogle Scholar
  62. 62.
    Park J et al (2016) Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl Med 8:344ra86–344ra86CrossRefGoogle Scholar
  63. 63.
    Khodagholy D et al (2016) Organic electronics for high-resolution electrocorticography of the human brain. Sci Adv 2:e1601027CrossRefGoogle Scholar
  64. 64.
    Jang K-I et al (2014) Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun 5:4779CrossRefGoogle Scholar
  65. 65.
    Choi MK et al (2015) Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv Funct Mater 25:7109–7118CrossRefGoogle Scholar
  66. 66.
    Minev IR et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347:159–163CrossRefGoogle Scholar
  67. 67.
    Son D et al (2015) Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9:5937–5946CrossRefGoogle Scholar
  68. 68.
    Kang S-K et al (2016) Bioresorbable silicon electronic sensors for the brain. Nature 530:71–76CrossRefGoogle Scholar
  69. 69.
    Kim SJ et al (2016) Stretchable and transparent biointerface using cell-sheet–graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv Funct Mater 26:3207–3217CrossRefGoogle Scholar
  70. 70.
    Kim D-H et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10:316CrossRefGoogle Scholar
  71. 71.
    Lee H et al (2015) An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 6:10059CrossRefGoogle Scholar
  72. 72.
    Kim T-i et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216CrossRefGoogle Scholar
  73. 73.
    Xie C et al (2015) Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat Mater 14:1286CrossRefGoogle Scholar
  74. 74.
    Jeong J-W et al (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162:662–674CrossRefGoogle Scholar
  75. 75.
    Yao S et al (2018) Nanomaterial-enabled wearable sensors for healthcare. Adv Healthc Mater 7:1700889CrossRefGoogle Scholar
  76. 76.
    Han S et al (2016) Mechanically reinforced skin-electronics with networked nanocomposite elastomer. Adv Mater 28:10257–10265CrossRefGoogle Scholar
  77. 77.
    Lipomi DJ et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRefGoogle Scholar
  78. 78.
    Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352CrossRefGoogle Scholar
  79. 79.
    Roh E et al (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261CrossRefGoogle Scholar
  80. 80.
    Li Y et al (2016) Poisson ratio and piezoresistive sensing: a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability. Adv Funct Mater 26:2900–2908CrossRefGoogle Scholar
  81. 81.
    Li Q et al (2017) Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 22:1700889Google Scholar
  82. 82.
    Jin H et al (2017) Advanced materials for health monitoring with skin-based wearable devices. Adv Healthc Mater 11:112–125Google Scholar
  83. 83.
    Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372CrossRefGoogle Scholar
  84. 84.
    Yan C et al (2015) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9:2130–2137CrossRefGoogle Scholar
  85. 85.
    Hong SY et al (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28:930–935CrossRefGoogle Scholar
  86. 86.
    Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821CrossRefGoogle Scholar
  87. 87.
    Mostafalu P, Sonkusale S (2015) A high-density nanowire electrode on paper for biomedical applications. RSC Adv 5:8680–8687CrossRefGoogle Scholar
  88. 88.
    Myers AC et al (2015) Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv 5:11627–11632CrossRefGoogle Scholar
  89. 89.
    Lee SM et al (2014) Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep 4:6074CrossRefGoogle Scholar
  90. 90.
    Zhao J et al (2013) A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos A: Appl Sci Manuf 48:129–136CrossRefGoogle Scholar
  91. 91.
    Lin L et al (2013) Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl Mater Interfaces 5:5815–5824CrossRefGoogle Scholar
  92. 92.
    Lee C et al (2013) High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl Phys Lett 102:183511CrossRefGoogle Scholar
  93. 93.
    Tian H et al (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRefGoogle Scholar
  94. 94.
    Amjadi M et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163CrossRefGoogle Scholar
  95. 95.
    Lee T et al (2016) Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater 26:6206–6214CrossRefGoogle Scholar
  96. 96.
    Ryu S et al (2015) ACS Nano 9:5929. CrossRef Google ScholarCrossRefGoogle Scholar
  97. 97.
    Cai G et al (2017) Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci 4:41Google Scholar
  98. 98.
    Woo S-J et al (2014) A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J Mater Chem C 2:4415–4422CrossRefGoogle Scholar
  99. 99.
    Cai L et al (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048CrossRefGoogle Scholar
  100. 100.
    Nour E et al (2015) A flexible anisotropic self-powered piezoelectric direction sensor based on double sided ZnO nanowires configuration. Nanotechnology 26:095502CrossRefGoogle Scholar
  101. 101.
    Lim S et al (2015) Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater 25:375–383CrossRefGoogle Scholar
  102. 102.
    Gong S, Cheng W (2017) One-dimensional nanomaterials for soft electronics. Adv Electron Mater 3:1600314CrossRefGoogle Scholar
  103. 103.
    Bae S-H et al (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRefGoogle Scholar
  104. 104.
    Kim KK et al (2015) Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett 15:5240–5247CrossRefGoogle Scholar
  105. 105.
    Nie B et al (2012) Droplet-based interfacial capacitive sensing. Lab Chip 12:1110–1118CrossRefGoogle Scholar
  106. 106.
    Zhu B et al (2014) Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10:3625–3631CrossRefGoogle Scholar
  107. 107.
    Bae GY et al (2016) Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28:5300–5306CrossRefGoogle Scholar
  108. 108.
    Jung S et al (2014) Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv Mater 26:4825–4830CrossRefGoogle Scholar
  109. 109.
    Yao HB et al (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 25:6692–6698CrossRefGoogle Scholar
  110. 110.
    Si Y et al (2016) Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28:9512–9518CrossRefGoogle Scholar
  111. 111.
    Wang Q et al (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657CrossRefGoogle Scholar
  112. 112.
    Li T et al (2016) Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12:5042–5048CrossRefGoogle Scholar
  113. 113.
    Kwon D et al (2016) Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl Mater Interfaces 8:16922–16931CrossRefGoogle Scholar
  114. 114.
    Wu W et al (2013) Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active/adaptive tactile imaging. Science 340:1234855CrossRefGoogle Scholar
  115. 115.
    Park S-H et al (2016) Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl Mater Interfaces 8:24773–24781CrossRefGoogle Scholar
  116. 116.
    Lin L et al (2013) Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7:8266–8274CrossRefGoogle Scholar
  117. 117.
    Khan U et al (2017) Graphene tribotronics for electronic skin and touch screen applications. Adv Mater 29:1603544CrossRefGoogle Scholar
  118. 118.
    Choi S et al (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218CrossRefGoogle Scholar
  119. 119.
    Mannsfeld SC et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9:859–864CrossRefGoogle Scholar
  120. 120.
    Lee S et al (2014) A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nat Commun 5:5898CrossRefGoogle Scholar
  121. 121.
    Pang C et al (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801CrossRefGoogle Scholar
  122. 122.
    Pang C et al (2015) Highly skin-conformal microhairy sensor for pulse signal amplification. Adv Mater 27:634–640CrossRefGoogle Scholar
  123. 123.
    Fan JA et al (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266CrossRefGoogle Scholar
  124. 124.
    Hattori Y et al (2014) Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthc Mater 3:1597–1607CrossRefGoogle Scholar
  125. 125.
    Lu N et al (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater 22:4044–4050CrossRefGoogle Scholar
  126. 126.
    Sekitani T et al (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468–1472CrossRefGoogle Scholar
  127. 127.
    Xu S et al (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366CrossRefGoogle Scholar
  128. 128.
    Park M et al (2015) Oxide nanomembrane hybrids with enhanced mechano-and thermo-sensitivity for semitransparent epidermal electronics. Adv Healthc Mater 4:992–997CrossRefGoogle Scholar
  129. 129.
    Gao L et al (2014) Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 5:4938CrossRefGoogle Scholar
  130. 130.
    Choi MK et al (2015) Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun 6:7149CrossRefGoogle Scholar
  131. 131.
    Xu L et al (2015) Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv Mater 27:1731–1737CrossRefGoogle Scholar
  132. 132.
    Khodagholy D et al (2011) Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 23:H268–H272CrossRefGoogle Scholar
  133. 133.
    Qi D et al (2015) Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv Mater 27:3145–3151CrossRefGoogle Scholar
  134. 134.
    Vitale F et al (2015) Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9:4465–4474CrossRefGoogle Scholar
  135. 135.
    Zhang H et al (2012) Layered nanocomposites from gold nanoparticles for neural prosthetic devices. Nano Lett 12:3391–3398CrossRefGoogle Scholar
  136. 136.
    Kim SJ et al (2015) Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy. ACS Nano 9:2677–2688CrossRefGoogle Scholar
  137. 137.
    Hong G et al (2015) Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett 15:6979–6984CrossRefGoogle Scholar
  138. 138.
    Verhaagen J et al (2009) Neurotherapy: progress in restorative neuroscience and neurology, vol 175. Elsevier, AmsterdamGoogle Scholar
  139. 139.
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26CrossRefGoogle Scholar
  140. 140.
    Kim R-H et al (2010) Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9:929CrossRefGoogle Scholar
  141. 141.
    Song YM et al (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497:95CrossRefGoogle Scholar
  142. 142.
    Lipomi DJ et al (2011) Stretchable organic solar cells. Adv Mater 23:1771–1775CrossRefGoogle Scholar
  143. 143.
    Bertolazzi S et al (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252CrossRefGoogle Scholar
  144. 144.
    Ko Y et al (2012) Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano 7:143–153CrossRefGoogle Scholar
  145. 145.
    Lee M-S et al (2013) High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Lett 13:2814–2821CrossRefGoogle Scholar
  146. 146.
    Choi S et al (2015) Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9:6626–6633CrossRefGoogle Scholar
  147. 147.
    Zaric M et al (2013) Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7:2042–2055CrossRefGoogle Scholar
  148. 148.
    Yu J et al (2015) Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci 112:8260–8265CrossRefGoogle Scholar
  149. 149.
    Zhong J et al (2014) Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6273–6280CrossRefGoogle Scholar
  150. 150.
    Wang S et al (2012) Organic field-effect transistors based on highly ordered single polymer fibers. Adv Mater 24:417–420CrossRefGoogle Scholar
  151. 151.
    Müller C et al (2011) Woven electrochemical transistors on silk fibers. Adv Mater 23:898–901CrossRefGoogle Scholar
  152. 152.
    Lee JB, Subramanian V (2005) Weave patterned organic transistors on fiber for E-textiles. IEEE Trans Electron Devices 52:269–275CrossRefGoogle Scholar
  153. 153.
    Hamedi M et al (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577CrossRefGoogle Scholar
  154. 154.
    Locher I et al (2006) Design and characterization of purely textile patch antennas. IEEE Trans Adv Packag 29:777–788CrossRefGoogle Scholar
  155. 155.
    Salvado R et al (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857CrossRefGoogle Scholar
  156. 156.
    Cottet D et al (2003) Electrical characterization of textile transmission lines. IEEE Trans Adv Packag 26:182–190CrossRefGoogle Scholar
  157. 157.
    Wang Z et al (2012) Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans Antennas Propag 60:4141–4147CrossRefGoogle Scholar
  158. 158.
    Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336CrossRefGoogle Scholar
  159. 159.
    Someya T et al (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci U S A 101:9966–9970CrossRefGoogle Scholar
  160. 160.
    Chun K-Y et al (2013) Free-standing nanocomposites with high conductivity and extensibility. Nanotechnology 24:165401CrossRefGoogle Scholar
  161. 161.
    Stoyanov H et al (2013) Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater 25:578–583CrossRefGoogle Scholar
  162. 162.
    Teng C et al (2013) Polymer in situ embedding for highly flexible, stretchable and water stable PEDOT: PSS composite conductors. RSC Adv 3:7219–7223CrossRefGoogle Scholar
  163. 163.
    Zhu S et al (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314CrossRefGoogle Scholar
  164. 164.
    Lacour SP et al (2004) An elastically stretchable TFT circuit. IEEE Electron Device Lett 25:792–794CrossRefGoogle Scholar
  165. 165.
    Wakuda D, Suganuma K (2011) Stretchable fine fiber with high conductivity fabricated by injection forming. Appl Phys Lett 98:33CrossRefGoogle Scholar
  166. 166.
    Rogers JA, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci U S A 106(27):10875–10876. Proc Natl Acad Sci U S A 106:16889 (2009)CrossRefGoogle Scholar
  167. 167.
    Van Der Sluis O et al (2010) Stretching-induced interconnect delamination in stretchable electronic circuits. J Phys D Appl Phys 44:034008CrossRefGoogle Scholar
  168. 168.
    Xu F et al (2010) Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5:672–678CrossRefGoogle Scholar
  169. 169.
    Song J et al (2009) Mechanics of noncoplanar mesh design for stretchable electronic circuits. J Appl Phys 105:123516CrossRefGoogle Scholar
  170. 170.
    Locher I, Tröster G (2008) Enabling technologies for electrical circuits on a woven monofilament hybrid fabric. Text Res J 78:583–594CrossRefGoogle Scholar
  171. 171.
    Li Q, Tao X (2011) A stretchable knitted interconnect for three-dimensional curvilinear surfaces. Text Res J 81:1171–1182CrossRefGoogle Scholar
  172. 172.
    Cao W (2013) Fabrication and modeling of stretchable conductors for traumatic brain injury research. Princeton University, PrincetonGoogle Scholar
  173. 173.
    Hamedi M et al (2007) Towards woven logic from organic electronic fibres. Nat Mater 6:357CrossRefGoogle Scholar
  174. 174.
    De Rossi D (2007) Electronic textiles: A logical step. Nat Mater 6:328CrossRefGoogle Scholar
  175. 175.
    Xu Z et al (2013) Highly electrically conductive ag-doped graphene fibers as stretchable conductors. Adv Mater 25:3249–3253CrossRefGoogle Scholar
  176. 176.
    Jalili R et al (2011) One-step wet-spinning process of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370CrossRefGoogle Scholar
  177. 177.
    Takei K et al (2015) Toward flexible and wearable human-interactive health-monitoring devices. Adv Healthc Mater 4:487–500CrossRefGoogle Scholar
  178. 178.
    Schwartz G et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859CrossRefGoogle Scholar
  179. 179.
    Digiglio P et al (2014) Microflotronic arterial tonometry for continuous wearable non-invasive hemodynamic monitoring. Ann Biomed Eng 42:2278–2288CrossRefGoogle Scholar
  180. 180.
    Wang C et al (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28:6640–6648CrossRefGoogle Scholar
  181. 181.
    Dagdeviren C et al (2014) Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 5:4496CrossRefGoogle Scholar
  182. 182.
    Choong CL et al (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26:3451–3458CrossRefGoogle Scholar
  183. 183.
    Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23:84–89CrossRefGoogle Scholar
  184. 184.
    Takei K et al (2014) Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc Natl Acad Sci 111:1703–1707CrossRefGoogle Scholar
  185. 185.
    Leleux P et al (2014) Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv Healthc Mater 3:1377–1380CrossRefGoogle Scholar
  186. 186.
    Lochner CM et al (2014) All-organic optoelectronic sensor for pulse oximetry. Nat Commun 5:5745CrossRefGoogle Scholar
  187. 187.
    Corbishley P, Rodríguez-Villegas E (2008) Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. Biomed Eng IEEE Trans 55:196–204CrossRefGoogle Scholar
  188. 188.
    Mimoz O et al (2012) Accuracy of respiratory rate monitoring using a non-invasive acoustic method after general anaesthesia. Br J Anaesth 108:872–875CrossRefGoogle Scholar
  189. 189.
    Folke M et al (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41:377–383CrossRefGoogle Scholar
  190. 190.
    Huang C-T et al (2008) A wearable yarn-based piezo-resistive sensor. Sensors Actuators A Phys 141:396–403CrossRefGoogle Scholar
  191. 191.
    Atalay O et al (2015) Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sensors J 15:110–122CrossRefGoogle Scholar
  192. 192.
    Wijesiriwardana R (2006) Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sensors J 6:571–579CrossRefGoogle Scholar
  193. 193.
    Li Y et al (2015) From cotton to wearable pressure sensor. J Mater Chem A 3:2181–2187CrossRefGoogle Scholar
  194. 194.
    Kundu SK et al (2013) A wearable capacitive sensor for monitoring human respiratory rate. Jpn J Appl Phys 52:04CL05CrossRefGoogle Scholar
  195. 195.
    Yamada T et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301CrossRefGoogle Scholar
  196. 196.
    Rajala S, Lekkala J (2012) Film-type sensor materials PVDF and EMFi in measurement of cardiorespiratory signals – a review. IEEE Sensors J 12:439–446CrossRefGoogle Scholar
  197. 197.
    Iguchi S et al (2007) A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevices 9:603–609CrossRefGoogle Scholar
  198. 198.
    Kudo H et al (2006) A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques. Biosens Bioelectron 22:558–562CrossRefGoogle Scholar
  199. 199.
    Liao Y-T et al (2012) A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J Solid State Circuits 47:335–344Google Scholar
  200. 200.
    Bandodkar AJ et al (2014) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87:394–398CrossRefGoogle Scholar
  201. 201.
    You X, Pak JJ (2014) Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sensors Actuators B Chem 202:1357–1365CrossRefGoogle Scholar
  202. 202.
    Li R et al (2014) Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film. Adv Funct Mater 24:6195–6203CrossRefGoogle Scholar
  203. 203.
    Wang X et al (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342CrossRefGoogle Scholar
  204. 204.
    Avolio AP et al (2009) Arterial blood pressure measurement and pulse wave analysis – their role in enhancing cardiovascular assessment. Physiol Meas 31:R1CrossRefGoogle Scholar
  205. 205.
    Nguyen N-T et al (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392CrossRefGoogle Scholar
  206. 206.
    Alahi MEE et al (2018) A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sensors Actuators A Phys 269:79–90CrossRefGoogle Scholar
  207. 207.
    Nag A, Mukhopadhyay SC (2018) Fabrication and implementation of printed sensors for taste sensing applications. Sensors Actuators A Phys 269:53–61CrossRefGoogle Scholar
  208. 208.
    Nag A et al (2018) Strain induced graphite/PDMS sensors for biomedical applications. Sensors Actuators A 271:257–269CrossRefGoogle Scholar
  209. 209.
    Nag A et al (2018) Performance analysis of flexible printed sensors for robotic arm applications. Sensors Actuators A: Phys 276:226–236CrossRefGoogle Scholar
  210. 210.
    Nag A et al (2017) Sensing system for salinity testing using laser-induced graphene sensors. Sensors Actuators A: Phys 251:148–155CrossRefGoogle Scholar
  211. 211.
    Nag A, et al. (2017) Urinary incontinence monitoring system using laser-induced graphene sensors. In: SENSORS, 2017 IEEE. pp 1–3Google Scholar
  212. 212.
    Nag A, et al. (2017) Influence of temperature and humidity on carbon based printed flexible sensors. In: Sensing technology (ICST), 2017 eleventh international conference on. pp 1–6Google Scholar
  213. 213.
    Nag A et al (2016) Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sensors Actuators A Phys 251:148–155CrossRefGoogle Scholar
  214. 214.
    Nag A, et al. (2016) Transparent biocompatible sensor patches for touch sensitive prosthetic limbs. In: Sensing technology (ICST), 2016 10th international conference on. pp 1–6Google Scholar
  215. 215.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations