Nanoscale Graphene-Based Environmental Gas Sensing

  • Manoharan MuruganathanEmail author
  • Hiroshi MizutaEmail author


The main aim of this chapter is to review the recent progress of miniaturized graphene sensors for the environmental gas sensing applications. As graphene has the highest surface-to-volume ratio and low-noise characteristics, it is expected to realize an extreme sensing limitation such as single-molecule adsorption. Due to these unique characteristics, graphene is being exploited by various research groups to detect very low-concentration environmental gas species which are hardly detectable with conventional sensors.


  1. 1.
    Brown SK, Sim MR, Abramson MJ, Gray CN (1994) Concentrations of volatile organic compounds in indoor air – a review. Indoor Air 4:123–134CrossRefGoogle Scholar
  2. 2.
    Kishi R, Ketema RM, Ait Bamai Y, Araki A, Kawai T, Tsuboi T et al (2018) Indoor environmental pollutants and their association with sick house syndrome among adults and children in elementary school. Build Environ 136:293–301CrossRefGoogle Scholar
  3. 3.
    Lee I, Choi S-J, Park K-M, Lee SS, Choi S, Kim I-D et al (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sensors Actuators B Chem 197:300–307CrossRefGoogle Scholar
  4. 4.
    Deng C, Zhang J, Yu X, Zhang W, Zhang X (2004) Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 810:269–275CrossRefGoogle Scholar
  5. 5.
    Alagirisamy N, Hardas SS, Jayaraman S (2010) Novel colorimetric sensor for oral malodour. Anal Chim Acta 661:97–102CrossRefGoogle Scholar
  6. 6.
    Karolak S, Nefau T, Bailly E, Solgadi A, Levi Y (2010) Estimation of illicit drugs consumption by wastewater analysis in Paris area (France). Forensic Sci Int 200:153–160CrossRefGoogle Scholar
  7. 7.
    Pohle R, Jeanty P, Stegmeier S, Hürttlen J, Fleischer M (2012) Detection of explosives based on the work function read-out of molecularly imprinted polymers. Procedia Eng 47:1370–1373CrossRefGoogle Scholar
  8. 8.
    Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P (2018) Chemical sensing with 2D materials. Chem Soc Rev 47:4860–4908CrossRefGoogle Scholar
  9. 9.
    Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1:10078CrossRefGoogle Scholar
  10. 10.
    Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sensors Actuators B Chem 218:160–183CrossRefGoogle Scholar
  11. 11.
    Aliofkhazraei M, Ali N, Milne W, Ozkan C, Mitura S, Gervasoni J (2016) Graphene science handbook: applications and industrialization [internet]. CRC Press, Boca Raton. [cited 2019 Jan 17]. Available from: Scholar
  12. 12.
    Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  13. 13.
    Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  14. 14.
    Mikhailov S (2011) Physics and applications of graphene – theory [Internet]. [cited 2018 Nov 25]. Available from:
  15. 15.
    Mikhailov S (2011) Physics and applications of graphene – experiments [Internet]. [cited 2018 Nov 25]. Available from:
  16. 16.
    Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209CrossRefGoogle Scholar
  17. 17.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  18. 18.
    Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT et al (2010) Two-dimensional phonon transport in supported graphene. Science 328:213–216CrossRefGoogle Scholar
  19. 19.
    Campos-Delgado J, Kim YA, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H et al (2009) Thermal stability studies of CVD-grown graphene nanoribbons: defect annealing and loop formation. Chem Phys Lett 469:177–182CrossRefGoogle Scholar
  20. 20.
    Balandin AA (2013) Low-frequency 1/f noise in graphene devices. Nat Nanotechnol 8:549–555CrossRefGoogle Scholar
  21. 21.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRefGoogle Scholar
  22. 22.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV et al (2005) Two-dimensional atomic crystals. PNAS 102:10451–10453CrossRefGoogle Scholar
  23. 23.
    Shivaraman S, Chandrashekhar MVS, Boeckl JJ, Spencer MG (2009) Thickness estimation of epitaxial graphene on SiC using attenuation of substrate Raman intensity. J Electron Mater 38:725–730CrossRefGoogle Scholar
  24. 24.
    Kruskopf M, Pakdehi DM, Pierz K, Wundrack S, Stosch R, Dziomba T et al (2016) Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. 2D Mater 3:041002CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications [Internet]. [cited 2018 Nov 25]. Available from:
  26. 26.
    Manoharan M, Mizuta H (2013) Point defect-induced transport bandgap widening in the downscaled armchair graphene nanoribbon device. Carbon 64:416–423CrossRefGoogle Scholar
  27. 27.
    Manoharan M, Mizuta H (2014) Edge irregularities in extremely down-scaled graphene nanoribbon devices: role of channel width. Mater Res Express 1:045605CrossRefGoogle Scholar
  28. 28.
    Uniform wafer-scale chemical vapor deposition of graphene on evaporated Cu (111) film with quality comparable to exfoliated monolayer. J Phys Chem C (ACS Publications) [Internet]. [cited 2018 Nov 25]. Available from:
  29. 29.
    Sun J, Iwasaki T, Muruganathan M, Mizuta H (2015) Lateral plasma etching enhanced on/off ratio in graphene nanoribbon field-effect transistor. Appl Phys Lett 106:033509CrossRefGoogle Scholar
  30. 30.
    Hammam AMM, Schmidt ME, Muruganathan M, Mizuta H (2017) Sharp switching behaviour in graphene nanoribbon p-n junction. Carbon 121:399–407CrossRefGoogle Scholar
  31. 31.
    Hamam AMM, Schmidt ME, Muruganathan M, Suzuki S, Mizuta H (2018) Sub-10 nm graphene nano-ribbon tunnel field-effect transistor. Carbon 126:588–593CrossRefGoogle Scholar
  32. 32.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246CrossRefGoogle Scholar
  33. 33.
    Iwasaki T, Sun J, Kanetake N, Chikuba T, Akabori M, Muruganathan M et al (2015) Hydrogen intercalation: an approach to eliminate silicon dioxide substrate doping to graphene. Appl Phys Express 8:015101CrossRefGoogle Scholar
  34. 34.
    Iwasaki T, Muruganathan M, Schmidt ME, Mizuta H (2017) Partial hydrogenation induced interaction in a graphene–SiO 2 interface: irreversible modulation of device characteristics. Nanoscale 9:1662–1669CrossRefGoogle Scholar
  35. 35.
    Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, MM-C C (2011) Carbon dioxide gas sensor using a graphene sheet. Sensors Actuators B Chem 157:310–313CrossRefGoogle Scholar
  36. 36.
    Smith AD, Elgammal K, Fan X, Lemme MC, Delin A, Råsander M et al (2017) Graphene-based CO 2 sensing and its cross-sensitivity with humidity. RSC Adv 7:22329–22339CrossRefGoogle Scholar
  37. 37.
    Chung MG, Kim DH, Lee HM, Kim T, Choi JH, kyun SD et al (2012) Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors Actuators B Chem 166–167:172–176CrossRefGoogle Scholar
  38. 38.
    Kumar S, Kaushik S, Pratap R, Raghavan S (2015) Graphene on paper: a simple, low-cost chemical sensing platform. ACS Appl Mater Interfaces 7:2189–2194CrossRefGoogle Scholar
  39. 39.
    Choi H, Choi JS, Kim J-S, Choe J-H, Chung KH, Shin J-W et al (2014) Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10:3685–3691CrossRefGoogle Scholar
  40. 40.
    Kim YH, Kim SJ, Kim Y-J, Shim Y-S, Kim SY, Hong BH et al (2015) Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9:10453–10460CrossRefGoogle Scholar
  41. 41.
    Gautam M, Jayatissa AH (2011) Gas sensing properties of graphene synthesized by chemical vapor deposition. Mater Sci Eng C 31:1405–1411CrossRefGoogle Scholar
  42. 42.
    Yavari F, Chen Z, Thomas AV, Ren W, Cheng H-M, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166CrossRefGoogle Scholar
  43. 43.
    Chen G, Paronyan TM, Harutyunyan AR (2012) Sub-ppt gas detection with pristine graphene. Appl Phys Lett 101:053119CrossRefGoogle Scholar
  44. 44.
    Sun J, Muruganathan M, Mizuta H (2016) Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci Adv 2:e1501518–e1501518CrossRefGoogle Scholar
  45. 45.
    Sun J, Wang W, Muruganathan M, Mizuta H (2014) Low pull-in voltage graphene electromechanical switch fabricated with a polymer sacrificial spacer. Appl Phys Lett 105:033103CrossRefGoogle Scholar
  46. 46.
    Muruganathan M, Sun J, Imamura T, Mizuta H (2015) Electrically tunable van der Waals interaction in graphene–molecule complex. Nano Lett 15:8176–8180CrossRefGoogle Scholar
  47. 47.
    Manoharan M, Chikuba T, Kanetake N, Sun J, Mizuta H (2015) Low pull-in voltage graphene nanoelectromechanical switches. Silicon Nanoelectronics Workshop (SNW) [Internet]. IEEE; 2015 [cited 2016 Jun 29]. p. 1–2. Available from:
  48. 48.
    Sun J, Schmidt ME, Muruganathan M, Chong HMH, Mizuta H (2016) Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates. [Internet]. Nanoscale.
  49. 49.
    Kulothungan J, Muruganathan M, Mizuta H (2016) 3D finite element simulation of graphene nano-electro-mechanical switches. Micromachines 7:143CrossRefGoogle Scholar
  50. 50.
    Schmidt ME, Iwasaki T, Muruganathan M, Haque M, Van Ngoc H, Ogawa S et al (2018) Structurally controlled large-area 10 nm pitch graphene nanomesh by focused helium ion beam milling. ACS Appl Mater Interfaces 10:10362–10368CrossRefGoogle Scholar
  51. 51.
    Van NH, Muruganathan M, Kulothungan J, Mizuta H (2018) Fabrication of a three-terminal graphene nanoelectromechanical switch using two-dimensional materials. Nanoscale 10:12349–12355CrossRefGoogle Scholar
  52. 52.
    Chiu H-Y, Hung P, Postma HWC, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett 8:4342–4346CrossRefGoogle Scholar
  53. 53.
    Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I et al (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4:861–867CrossRefGoogle Scholar
  54. 54.
    Chen C, Lee S, Deshpande VV, Lee G-H, Lekas M, Shepard K et al (2013) Graphene mechanical oscillators with tunable frequency. Nat Nanotechnol 8:923–927CrossRefGoogle Scholar
  55. 55.
    Muruganathan M, Seto F, Mizuta H (2018) Graphene Nanomechanical resonator mass sensing of mixed H 2 /Ar gas. Int J Autom Technol 12:24–28CrossRefGoogle Scholar
  56. 56.
    Muruganathan M, Miyashita H, Kulothungan J, Schmidt ME, Mizuta H (2018) Zeptogram level mass sensing of light weight gas molecules using graphene nanomechanical (GNEM) resonator. IEEE SENSORS 2018:1–4Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan
  2. 2.Hitachi Cambridge LaboratoryCambridgeUK

Personalised recommendations