Advertisement

Evaluating Carcinogenic Potential of Carbon Nanomaterials

  • Rajib Ghosh
  • Yon RojanasakulEmail author
Chapter
  • 195 Downloads

Abstract

The goal is to review the adverse health effects, in particular carcinogenic effects, of various carbon-based nanomaterials during their life cycle, including synthesis, utilization, and disposal. Nanomaterials hold great promise for the development of new and better products. However, a number of commercial and biomedical applications of nanomaterials have been reported to have undesirable adverse health effects. Here, we summarize and discuss key findings from recent studies that assess the carcinogenic potential of carbon nanomaterials.

Notes

Acknowledgments

This work was supported by grants from the National Institutes of Health R01-ES022968 and R01-EB018857.

Declaration of Interest

The authors report no declarations of interest.

References

  1. 1.
    Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ (2017) Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst 34(4):317–353.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017845CrossRefGoogle Scholar
  2. 2.
    Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105.  https://doi.org/10.1111/j.1365-2796.2009.02187.xCrossRefGoogle Scholar
  3. 3.
    Zhang BT, Zheng X, Li HF, Lin JM (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17.  https://doi.org/10.1016/j.aca.2013.03.054CrossRefGoogle Scholar
  4. 4.
    Meijo Nano Carbon C (2018) What we can do with carbon nanotube? http://www.meijo-nano.com/en/applications/use.html
  5. 5.
    Research, Markets l (2018) Carbon nanotubes (CNT) market by type, method, application – global forecast to 2023. @researchmarkets. https://www.researchandmarkets.com/reports/4668351/carbon-nanotubes-cnt-market-by-type-method
  6. 6.
    Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51(1):1–12.  https://doi.org/10.1093/annhyg/mel071CrossRefGoogle Scholar
  7. 7.
    Johnson DR, Methner MM, Kennedy AJ, Steevens JA (2010) Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect 118(1):49–54.  https://doi.org/10.1289/ehp.0901076CrossRefGoogle Scholar
  8. 8.
    Patel V (2011) Global carbon nanotubes market-industry beckons. J Nanontechnol Insights 2:31–35Google Scholar
  9. 9.
    Stueckle TA, Sargent L, Rojanasakul Y, Wang L (2016) Genotoxicity and carcinogenic potential of carbon nanomaterials. In: Chunying C, Haifang W (eds) Biomedical applications and toxicology of carbon nanomaterials. Weinheim, Germany, pp 267–332.  https://doi.org/10.1002/9783527692866.ch10CrossRefGoogle Scholar
  10. 10.
    Luanpitpong S, Wang L, Davidson DC, Riedel H, Rojanasakul Y (2016) Carcinogenic potential of high aspect ratio carbon nanomaterials. Environ Sci Nano 3(3):483–493.  https://doi.org/10.1039/C5EN00238ACrossRefGoogle Scholar
  11. 11.
    Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5(10):1616–1636CrossRefGoogle Scholar
  12. 12.
    Sargent LM, Reynolds SH, Castranova V (2010) Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. Nanotoxicology 4(4):396–408.  https://doi.org/10.3109/17435390.2010.500444CrossRefGoogle Scholar
  13. 13.
    Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29(2):427–433.  https://doi.org/10.1093/carcin/bgm243CrossRefGoogle Scholar
  14. 14.
    Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025.  https://doi.org/10.1016/j.biomaterials.2012.07.040CrossRefGoogle Scholar
  15. 15.
    World Health Organization (2018) Cancer. http://www.who.int/news-room/fact-sheets/detail/cancer
  16. 16.
    Samet JM (2004) Environmental causes of lung cancer: what do we know in 2003? Chest 125(5):80S–83SCrossRefGoogle Scholar
  17. 17.
    Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, Rudin CM (2009) Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 15(18):5626–5645.  https://doi.org/10.1158/1078-0432.CCR-09-0376CrossRefGoogle Scholar
  18. 18.
    Field RW, Withers BL (2012) Occupational and environmental causes of lung cancer. Clin Chest Med 33(4):681–703.  https://doi.org/10.1016/j.ccm.2012.07.001CrossRefGoogle Scholar
  19. 19.
    Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K, International Agency for Research on Cancer Monograph Working Group I (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14(13):1262–1263.  https://doi.org/10.1016/s1470-2045(13)70487-xCrossRefGoogle Scholar
  20. 20.
    Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S (2016) Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol 13(1):53.  https://doi.org/10.1186/s12989-016-0164-2CrossRefGoogle Scholar
  21. 21.
    Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K (2018) Nanomaterial exposure, toxicity, and impact on human health. In: Wiley interdisciplinary reviews nanomedicine and nanobiotechnology. WIREs Nanomed Nanobiotechnol  https://doi.org/10.1002/wnan.1513Google Scholar
  22. 22.
    Manke A, Luanpitpong S, Rojanasakul Y (2014) Potential occupational risks associated with pulmonary toxicity of carbon nanotubes. In: Occupational medicine & health affairs 2.  https://doi.org/10.4172/2329-6879.1000165
  23. 23.
    Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, Derk R, Stueckle TA, Porter DW, Sager T, Gou H, Dinu CZ, Wu N, Mercer RR, Rojanasakul Y (2014) Effect of fiber length on carbon nanotube-induced fibrogenesis. Int J Mol Sci 15(5):7444–7461.  https://doi.org/10.3390/ijms15057444CrossRefGoogle Scholar
  24. 24.
    Luanpitpong S, Wang L, Rojanasakul Y (2014) The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine (Lond) 9(6):895–912.  https://doi.org/10.2217/nnm.14.42CrossRefGoogle Scholar
  25. 25.
    Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916.  https://doi.org/10.1155/2013/942916CrossRefGoogle Scholar
  26. 26.
    Wang L, Davidson DC, Castranova V, Rojanasakul Y (2016) Pulmonary effects of carbon nanomaterials. In: Chunying C, Haifang W (eds) Biomedical applications and toxicology of carbon nanomaterials. Weinheim, Germany, pp 163–194.  https://doi.org/10.1002/9783527692866.ch6CrossRefGoogle Scholar
  27. 27.
    Manke A, Rojanasakul L, Rojanasakul Y (2018) Mechanisms underlying the fibrogenic responses of carbon nanotubes. In: Fishbein JC, Heilman JM (eds) Advances in molecular toxicology, Advances in Molecular Toxicology, vol 12. Elsevier, Cambridge, MA, pp 47–68.  https://doi.org/10.1016/b978-0-444-64199-1.00003-8CrossRefGoogle Scholar
  28. 28.
    Mohajeri M, Behnam B, Sahebkar A (2018) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol 234(1):298–319.  https://doi.org/10.1002/jcp.26899CrossRefGoogle Scholar
  29. 29.
    Pacurari M, Castranova V, Vallyathan V (2010) Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 73(5):378–395.  https://doi.org/10.1080/15287390903486527CrossRefGoogle Scholar
  30. 30.
    Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24(30):305704.  https://doi.org/10.1088/0957-4484/24/30/305704CrossRefGoogle Scholar
  31. 31.
    Liu YQ, Hu WP, Wang XB, Long CF, Zhang JB, Zhu DB, Tang DS, Xie SS (2000) Carbon nanorods. Chem Phys Lett 331(1):31–34.  https://doi.org/10.1016/S0009-2614(00)01143-XCrossRefGoogle Scholar
  32. 32.
    Cao LM, Chen YS, Yang CL, Song YQ, Yang J, Jia JP (2014) Selective fabrication of carbon nanowires, carbon nanotubes, and graphene by catalytic chemical liquid deposition. Mater Res Bull 55:229–236.  https://doi.org/10.1016/j.materresbull.2014.04.039CrossRefGoogle Scholar
  33. 33.
    Fan H, Shen W (2015) Carbon nanosheets: synthesis and application. ChemSusChem 8(12):2004–2027.  https://doi.org/10.1002/cssc.201500141CrossRefGoogle Scholar
  34. 34.
    Notarianni M, Liu J, Vernon K, Motta N (2016) Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J Nanotechnol 7:149–196.  https://doi.org/10.3762/bjnano.7.17CrossRefGoogle Scholar
  35. 35.
    Derk R, Davidson DC, Manke A, Stueckle TA, Rojanasakul Y, Wang L (2015) Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier. Sens Bio-Sens Res 3:38–45.  https://doi.org/10.1016/j.sbsr.2014.12.002CrossRefGoogle Scholar
  36. 36.
    Rotoli BM, Bussolati O, Barilli A, Zanello PP, Bianchi MG, Magrini A, Pietroiusti A, Bergamaschi A, Bergamaschi E (2009) Airway barrier dysfunction induced by exposure to carbon nanotubes in vitro: which role for fiber length? Hum Exp Toxicol 28(6–7):361–368.  https://doi.org/10.1177/0960327109105159CrossRefGoogle Scholar
  37. 37.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428.  https://doi.org/10.1038/nnano.2008.111CrossRefGoogle Scholar
  38. 38.
    Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, Byrne F, Prina-Mello A, Volkov Y, Li S, Mather SJ, Bianco A, Prato M, Macnee W, Wallace WA, Kostarelos K, Donaldson K (2011) Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178(6):2587–2600.  https://doi.org/10.1016/j.ajpath.2011.02.040CrossRefGoogle Scholar
  39. 39.
    Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol BioSyst 1(2):176–182.  https://doi.org/10.1039/b502429cCrossRefGoogle Scholar
  40. 40.
    Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20(7):1202–1212.  https://doi.org/10.1016/j.tiv.2006.03.008CrossRefGoogle Scholar
  41. 41.
    Murray AR, Kisin ER, Tkach AV, Yanamala N, Mercer R, Young SH, Fadeel B, Kagan VE, Shvedova AA (2012) Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol 9(1):10.  https://doi.org/10.1186/1743-8977-9-10CrossRefGoogle Scholar
  42. 42.
    Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125.  https://doi.org/10.1021/nl060162eCrossRefGoogle Scholar
  43. 43.
    Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413CrossRefGoogle Scholar
  44. 44.
    Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, Kayamuro H, Nabeshi H, Yamashita T, Nagano K (2010) Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33(4):276–280CrossRefGoogle Scholar
  45. 45.
    Hu X, Cook S, Wang P, Hwang HM, Liu X, Williams QL (2010) In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ 408(8):1812–1817.  https://doi.org/10.1016/j.scitotenv.2010.01.035CrossRefGoogle Scholar
  46. 46.
    Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5(9):6861–6870CrossRefGoogle Scholar
  47. 47.
    Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, Ishihara T, Yamashita K, Yoshikawa Y, Yasui H, Jiang L, Ohara H, Takahashi T, Ichihara G, Kostarelos K, Miyata Y, Shinohara H, Toyokuni S (2011) Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A 108(49):E1330–E1338.  https://doi.org/10.1073/pnas.1110013108CrossRefGoogle Scholar
  48. 48.
    Liu J, Legros S, Ma G, Veinot JG, von der Kammer F, Hofmann T (2012) Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 87(8):918–924.  https://doi.org/10.1016/j.chemosphere.2012.01.045CrossRefGoogle Scholar
  49. 49.
    Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, Mazzucco G, Attanasio A, Yakoub Y, Lison D (2011) Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 25(1):74–82CrossRefGoogle Scholar
  50. 50.
    Bussy C, Pinault M, Cambedouzou J, Landry MJ, Jegou P, Mayne-L’hermite M, Launois P, Boczkowski J, Lanone S (2012) Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol 9:46.  https://doi.org/10.1186/1743-8977-9-46CrossRefGoogle Scholar
  51. 51.
    Murphy FA, Schinwald A, Poland CA, Donaldson K (2012) The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 9(1):8.  https://doi.org/10.1186/1743-8977-9-8CrossRefGoogle Scholar
  52. 52.
    Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2):402–411.  https://doi.org/10.1016/j.biomaterials.2011.09.091CrossRefGoogle Scholar
  53. 53.
    Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S (2013) Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol 10:52.  https://doi.org/10.1186/1743-8977-10-52CrossRefGoogle Scholar
  54. 54.
    Saxena RK, Williams W, McGee JK, Daniels MJ, Boykin E, Ian Gilmour M (2009) Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1(4):291–300.  https://doi.org/10.1080/17435390701803110CrossRefGoogle Scholar
  55. 55.
    Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao YP, Wang M, Li Z, Hwang AA, Song TB, Xu R, Yang Y, Zink JI, Nel AE, Xia T (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352–2368.  https://doi.org/10.1021/nn305567sCrossRefGoogle Scholar
  56. 56.
    Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB (2010) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25(6):608–621.  https://doi.org/10.1002/tox.20621CrossRefGoogle Scholar
  57. 57.
    Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, Parsons GN, Bonner JC (2014) Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One 9(9):e106870.  https://doi.org/10.1371/journal.pone.0106870CrossRefGoogle Scholar
  58. 58.
    Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, Chuttani K, Mishra AK (2011) Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24(11):2028–2039.  https://doi.org/10.1021/tx2003728CrossRefGoogle Scholar
  59. 59.
    Kotchey GP, Zhao Y, Kagan VE, Star A (2013) Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv Drug Deliv Rev 65(15):1921–1932.  https://doi.org/10.1016/j.addr.2013.07.007CrossRefGoogle Scholar
  60. 60.
    Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, Porter DW, Wu N, Yang F, Hamilton RF, Holian A (2014) Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 8(3):317–327.  https://doi.org/10.3109/17435390.2013.779757CrossRefGoogle Scholar
  61. 61.
    Zhou L, Forman HJ, Ge Y, Lunec J (2017) Multi-walled carbon nanotubes: a cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol In Vitro 42:292–298.  https://doi.org/10.1016/j.tiv.2017.04.027CrossRefGoogle Scholar
  62. 62.
    Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142.  https://doi.org/10.1016/j.toxlet.2005.08.011CrossRefGoogle Scholar
  63. 63.
    Saxena RK, Williams W, McGee JK, Daniels MJ, Boykin E, Ian Gilmour M (2007) Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1(4):291–300.  https://doi.org/10.1080/17435390701803110CrossRefGoogle Scholar
  64. 64.
    Zhang LW, Zeng L, Barron AR, Monteiro-Riviere NA (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 26(2):103–113.  https://doi.org/10.1080/10915810701225133CrossRefGoogle Scholar
  65. 65.
    Wang R, Mikoryak C, Li S, Bushdiecker D 2nd, Musselman IH, Pantano P, Draper RK (2011) Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol Pharm 8(4):1351–1361.  https://doi.org/10.1021/mp2001439CrossRefGoogle Scholar
  66. 66.
    Meng J, Cheng X, Liu J, Zhang W, Li X, Kong H, Xu H (2012) Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One 7(7):e38995.  https://doi.org/10.1371/journal.pone.0038995CrossRefGoogle Scholar
  67. 67.
    Coccini T, Manzo L, Roda E (2013) Safety evaluation of engineered nanomaterials for health risk assessment: an experimental tiered testing approach using pristine and functionalized carbon nanotubes. ISRN Toxicol 2013:825427.  https://doi.org/10.1155/2013/825427CrossRefGoogle Scholar
  68. 68.
    Stueckle TA, Davidson DC, Derk R, Wang P, Friend S, Schwegler-Berry D, Zheng P, Wu N, Castranova V, Rojanasakul Y, Wang L (2017) Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology 11(5):613–624.  https://doi.org/10.1080/17435390.2017.1332253CrossRefGoogle Scholar
  69. 69.
    Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013:80:Artn 710175.  https://doi.org/10.1155/2013/710175CrossRefGoogle Scholar
  70. 70.
    Wang T, Song B, Qiao K, Huang Y, Wang L (2018) Effect of dimensions and agglomerations of carbon nanotubes on synchronous enhancement of mechanical and damping properties of epoxy nanocomposites. Nanomaterials (Basel, Switzerland) 8(12):996.  https://doi.org/10.3390/nano8120996CrossRefGoogle Scholar
  71. 71.
    Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, Shvedova AA, Castranova V (2008) Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294(1):L87–L97.  https://doi.org/10.1152/ajplung.00186.2007CrossRefGoogle Scholar
  72. 72.
    Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, Rojanasakul Y (2010) Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31.  https://doi.org/10.1186/1743-8977-7-31CrossRefGoogle Scholar
  73. 73.
    Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber AT, Jensen KA, Wallin H, Vogel U (2017) Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis 32(6):581–597.  https://doi.org/10.1093/mutage/gex042CrossRefGoogle Scholar
  74. 74.
    Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21(3):438–448.  https://doi.org/10.1016/j.tiv.2006.10.007CrossRefGoogle Scholar
  75. 75.
    Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131.  https://doi.org/10.1016/j.toxlet.2006.08.019CrossRefGoogle Scholar
  76. 76.
    Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4(11):747–751.  https://doi.org/10.1038/nnano.2009.305CrossRefGoogle Scholar
  77. 77.
    Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, Wu N, Castranova V (2010) Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73(5):410–422.  https://doi.org/10.1080/15287390903486550CrossRefGoogle Scholar
  78. 78.
    Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW (2011) Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8:21.  https://doi.org/10.1186/1743-8977-8-21CrossRefGoogle Scholar
  79. 79.
    Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147.  https://doi.org/10.1016/j.tox.2009.10.017CrossRefGoogle Scholar
  80. 80.
    Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. In: Whitacre D (eds) Reviews of environmental contamination and toxicology, vol 215. Springer, New York, NY, pp 39–121Google Scholar
  81. 81.
    Xu J-Y, Li Q-N, Li J-G, Ran T-C, Wu S-W, Song W-M, Chen S-L, Li W-X (2007) Biodistribution of 99mTc-C60 (OH) x in Sprague–Dawley rats after intratracheal instillation. Carbon 45(9):1865–1870CrossRefGoogle Scholar
  82. 82.
    Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW (2013) Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 10(1):33.  https://doi.org/10.1186/1743-8977-10-33CrossRefGoogle Scholar
  83. 83.
    Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW (2013) Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10(1):38.  https://doi.org/10.1186/1743-8977-10-38CrossRefGoogle Scholar
  84. 84.
    Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluharty KL, Castranova V, Reynolds SH (2014) Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11(1):3.  https://doi.org/10.1186/1743-8977-11-3CrossRefGoogle Scholar
  85. 85.
    Wong CH, Sofer Z, Kubesova M, Kucera J, Matejkova S, Pumera M (2014) Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proc Natl Acad Sci U S A 111(38):13774–13779.  https://doi.org/10.1073/pnas.1413389111CrossRefGoogle Scholar
  86. 86.
    Mullick Chowdhury S, Dasgupta S, McElroy AE, Sitharaman B (2014) Structural disruption increases toxicity of graphene nanoribbons. J Appl Toxicol 34(11):1235–1246.  https://doi.org/10.1002/jat.3066CrossRefGoogle Scholar
  87. 87.
    Manke A, Wang L, Rojanasakul Y (2013) Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol Mech Methods 23(3):196–206.  https://doi.org/10.3109/15376516.2012.753967CrossRefGoogle Scholar
  88. 88.
    Moller P, Jacobsen NR (2017) Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit Rev Toxicol 47(10):867–884.  https://doi.org/10.1080/10408444.2017.1367755CrossRefGoogle Scholar
  89. 89.
    Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217.  https://doi.org/10.1289/ehp.10924CrossRefGoogle Scholar
  90. 90.
    Pacurari M, Yin XJ, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Chirila M, Endo M, Castranova V, Vallyathan V (2008) Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology 2(3):155–170.  https://doi.org/10.1080/17435390802318356CrossRefGoogle Scholar
  91. 91.
    Poulsen SS, Jackson P, Kling K, Knudsen KB, Skaug V, Kyjovska ZO, Thomsen BL, Clausen PA, Atluri R, Berthing T, Bengtson S, Wolff H, Jensen KA, Wallin H, Vogel U (2016) Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology 10(9):1263–1275.  https://doi.org/10.1080/17435390.2016.1202351CrossRefGoogle Scholar
  92. 92.
    Polimeni M, Gulino GR, Gazzano E, Kopecka J, Marucco A, Fenoglio I, Cesano F, Campagnolo L, Magrini A, Pietroiusti A, Ghigo D, Aldieri E (2016) Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-beta-mediated Akt/GSK-3beta/SNAIL-1 signalling pathway. Part Fibre Toxicol 13(1):27.  https://doi.org/10.1186/s12989-016-0138-4CrossRefGoogle Scholar
  93. 93.
    Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, Wang L, Bai R, Chen Z, Zhao Y, Chen C (2013) Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-beta/Smad signaling pathway. Small 9(22):3799–3811.  https://doi.org/10.1002/smll.201300607CrossRefGoogle Scholar
  94. 94.
    Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, Cui X, Wang Y, Wang H, Jia G (2014) Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett 226(2):150–162.  https://doi.org/10.1016/j.toxlet.2014.02.004CrossRefGoogle Scholar
  95. 95.
    Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926CrossRefGoogle Scholar
  96. 96.
    Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165(1):88–100.  https://doi.org/10.1016/j.toxlet.2006.02.001CrossRefGoogle Scholar
  97. 97.
    Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74.  https://doi.org/10.1016/j.toxlet.2006.11.001CrossRefGoogle Scholar
  98. 98.
    Vittorio O, Raffa V, Cuschieri A (2009) Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine 5(4):424–431.  https://doi.org/10.1016/j.nano.2009.02.006CrossRefGoogle Scholar
  99. 99.
    Nowak R, Olech M, Nowacka N (2014) Chapter 97 –plant polyphenols as chemopreventive agents. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease. Academic, San Diego, pp 1289–1307.  https://doi.org/10.1016/B978-0-12-398456-2.00086-4CrossRefGoogle Scholar
  100. 100.
    Dhanda J, Shaw RJ (2017) 14 – the molecular biology of head and neck cancer. In: Brennan PA, Schliephake H, Ghali GE, Cascarini L (eds) Maxillofacial surgery, 3rd edn. Churchill Livingstone, Edinburgh, pp 243–256.  https://doi.org/10.1016/B978-0-7020-6056-4.00014-9CrossRefGoogle Scholar
  101. 101.
    Bevers TB, Brown PH, Maresso KC, Hawk ET (2014) 23 – cancer prevention, screening, and early detection. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE (eds) Abeloff’s clinical oncology, Content Repository Only! 5th edn. Saunders, Philadelphia, pp 322–359.e312.  https://doi.org/10.1016/B978-1-4557-2865-7.00023-0CrossRefGoogle Scholar
  102. 102.
    Cole L, Kramer PR (2016) Chapter 6.3 – Human cancers and carcinogenesis. In: Cole L, Kramer PR (eds) Human physiology, biochemistry and basic medicine. Academic, Boston, pp 197–200.  https://doi.org/10.1016/B978-0-12-803699-0.00041-4CrossRefGoogle Scholar
  103. 103.
    Markert EK, Levine AJ, Vazquez A (2012) Proliferation and tissue remodeling in cancer: the hallmarks revisited. Cell Death Dis 3:e397.  https://doi.org/10.1038/cddis.2012.140CrossRefGoogle Scholar
  104. 104.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013CrossRefGoogle Scholar
  105. 105.
    Devi PU (2004) Basics of carcinogenesis. Health Adm 17(1):16–24Google Scholar
  106. 106.
    National Cancer Institute (2017) Metastatic cancer. https://www.cancer.gov/types/metastatic-cancer
  107. 107.
    Pitot HC (1993) The molecular biology of carcinogenesis. Cancer 72(3 Suppl):962–970CrossRefGoogle Scholar
  108. 108.
    Abel EL, Angel JM, Kiguchi K, DiGiovanni J (2009) Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 4(9):1350–1362.  https://doi.org/10.1038/nprot.2009.120CrossRefGoogle Scholar
  109. 109.
    Scott RE, Wille JJ Jr, Wier ML (1984) Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc 59(2):107–117CrossRefGoogle Scholar
  110. 110.
    Hawkins JM, Lewis TA, Loren SD, Meyer A, Heath JR, Shibato Y, Saykally RJ (1990) Organic chemistry of C60 (Buckminsterfullerene): chromatography and osmylation. J Org Chem 55(26):6250–6252CrossRefGoogle Scholar
  111. 111.
    Nelson MA, Domann FE, Bowden GT, Hooser SB, Fernando Q, Carter DE (1993) Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health 9(4):623–630CrossRefGoogle Scholar
  112. 112.
    Cao Y, Roursgaard M, Jacobsen NR, Moller P, Loft S (2016) Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures. Nanotoxicology 10(2):235–244.  https://doi.org/10.3109/17435390.2015.1048325CrossRefGoogle Scholar
  113. 113.
    Snyder-Talkington BN, Schwegler-Berry D, Castranova V, Qian Y, Guo NL (2013) Multi-walled carbon nanotubes induce human microvascular endothelial cellular effects in an alveolar-capillary co-culture with small airway epithelial cells. Part Fibre Toxicol 10:35.  https://doi.org/10.1186/1743-8977-10-35CrossRefGoogle Scholar
  114. 114.
    Zhang X, Yang L, Liu Y, Song Z, Zhao J, Chen D, Yu H, Li R, Wang Y, Yang K, Chen Y, Xia M, Zhang LW (2018) Detection of nanocarrier potentiation on drug induced phospholipidosis in cultured cells and primary hepatocyte spheroids by high content imaging and analysis. Toxicol Appl Pharmacol 348:54–66.  https://doi.org/10.1016/j.taap.2018.04.016CrossRefGoogle Scholar
  115. 115.
    He X, Kiratipaiboon C, Porter DW, Rojanasakul LW, Dinu CZ, Wang K, Yang Y, Rojanasakul Y (2018) Predicting nanotube fibrogenicity through stem cell-mediated fibroblast focus and spheroid formation. Nano Lett 18(10):6500–6508.  https://doi.org/10.1021/acs.nanolett.8b03032CrossRefGoogle Scholar
  116. 116.
    Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J (2019) A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol In Vitro 54:105–113.  https://doi.org/10.1016/j.tiv.2018.08.014CrossRefGoogle Scholar
  117. 117.
    Yang X, Li K, Zhang X, Liu C, Guo B, Wen W, Gao X (2018) Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip 18(3):486–495.  https://doi.org/10.1039/c7lc01224aCrossRefGoogle Scholar
  118. 118.
    Secondo LE, Liu NJ, Lewinski NA (2017) Methodological considerations when conducting in vitro, air-liquid interface exposures to engineered nanoparticle aerosols. Crit Rev Toxicol 47(3):225–262.  https://doi.org/10.1080/10408444.2016.1223015CrossRefGoogle Scholar
  119. 119.
    Geiser M, Jeannet N, Fierz M, Burtscher H (2017) Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology. Nanomaterials (Basel, Switzerland) 7(2):49.  https://doi.org/10.3390/nano7020049CrossRefGoogle Scholar
  120. 120.
    Polk WW, Sharma M, Sayes CM, Hotchkiss JA, Clippinger AJ (2016) Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface. Part Fibre Toxicol 13:20.  https://doi.org/10.1186/s12989-016-0131-yCrossRefGoogle Scholar
  121. 121.
    Ong LC, Chung FF, Tan YF, Leong CO (2016) Toxicity of single-walled carbon nanotubes. Arch Toxicol 90(1):103–118.  https://doi.org/10.1007/s00204-014-1376-6CrossRefGoogle Scholar
  122. 122.
    Saha D, Heldt CL, Gencoglu MF, Vijayaragavan KS, Chen J, Saksule A (2016) A study on the cytotoxicity of carbon-based materials. Mater Sci Eng C Mater Biol Appl 68:101–108.  https://doi.org/10.1016/j.msec.2016.05.094CrossRefGoogle Scholar
  123. 123.
    Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5(9):1676–1684.  https://doi.org/10.1021/nl0507966CrossRefGoogle Scholar
  124. 124.
    Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U (2015) Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56(2):183–203.  https://doi.org/10.1002/em.21922CrossRefGoogle Scholar
  125. 125.
    Tamaoki J, Isono K, Takeyama K, Tagaya E, Nakata J, Nagai A (2004) Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol 287(6):L1127–L1133.  https://doi.org/10.1152/ajplung.00241.2004CrossRefGoogle Scholar
  126. 126.
    Niwa Y, Iwai N (2006) Genotoxicity in cell lines induced by chronic exposure to water-soluble fullerenes using micronucleus test. Environ Health Prev Med 11(6):292–297.  https://doi.org/10.1007/BF02898019CrossRefGoogle Scholar
  127. 127.
    Wang L, Luanpitpong S, Castranova V, Tse W, Lu Y, Pongrakhananon V, Rojanasakul Y (2011) Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett 11(7):2796–2803.  https://doi.org/10.1021/nl2011214CrossRefGoogle Scholar
  128. 128.
    Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, Benkovic SA, Lowry DT, Murray AR, Kisin ER, Siegrist KJ, Battelli L, Mastovich J, Sturgeon JL, Bunker KL, Shvedova AA, Reynolds SH (2012) Single-walled carbon nanotube-induced mitotic disruption. Mutat Res 745(1–2):28–37.  https://doi.org/10.1016/j.mrgentox.2011.11.017CrossRefGoogle Scholar
  129. 129.
    Lohcharoenkal W, Wang L, Stueckle TA, Dinu CZ, Castranova V, Liu Y, Rojanasakul Y (2013) Chronic exposure to carbon nanotubes induces invasion of human mesothelial cells through matrix metalloproteinase-2. ACS Nano 7(9):7711–7723.  https://doi.org/10.1021/nn402241bCrossRefGoogle Scholar
  130. 130.
    Wang L, Stueckle TA, Mishra A, Derk R, Meighan T, Castranova V, Rojanasakul Y (2014) Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology 8(5):485–507.  https://doi.org/10.3109/17435390.2013.801089CrossRefGoogle Scholar
  131. 131.
    Ravichandran P, Periyakaruppan A, Sadanandan B, Ramesh V, Hall JC, Jejelowo O, Ramesh GT (2009) Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J Biochem Mol Toxicol 23(5):333–344.  https://doi.org/10.1002/jbt.20296CrossRefGoogle Scholar
  132. 132.
    Pacurari M, Schwegler-Berry D, Friend S, Leonard SS, Mercer RR, Vallyathan V, Castranova V (2011) Raw single-walled carbon nanotube-induced cytotoxic effects in human bronchial epithelial cells: comparison to asbestos. Toxicol Environ Chem 93(5):1045–1072:Pii 937792821.  https://doi.org/10.1080/02772248.2011.571530CrossRefGoogle Scholar
  133. 133.
    Zeni O, Sannino A, Romeo S, Micciulla F, Bellucci S, Scarfi MR (2015) Growth inhibition, cell-cycle alteration and apoptosis in stimulated human peripheral blood lymphocytes by multiwalled carbon nanotube buckypaper. Nanomedicine (Lond) 10(3):351–360.  https://doi.org/10.2217/nnm.14.34CrossRefGoogle Scholar
  134. 134.
    Erdmann K, Ringel J, Hampel S, Rieger C, Huebner D, Wirth MP, Fuessel S (2014) Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms. Nanotechnology 25(40):405102.  https://doi.org/10.1088/0957-4484/25/40/405102CrossRefGoogle Scholar
  135. 135.
    Donaldson K, Poland CA (2012) Inhaled nanoparticles and lung cancer – what we can learn from conventional particle toxicology. Swiss Med Wkly 142:w13547.  https://doi.org/10.4414/smw.2012.13547CrossRefGoogle Scholar
  136. 136.
    Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Inhaled particles and lung cancer. Part a: mechanisms. Int J Cancer 109(6):799–809.  https://doi.org/10.1002/ijc.11708CrossRefGoogle Scholar
  137. 137.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40.  https://doi.org/10.1016/j.cbi.2005.12.009CrossRefGoogle Scholar
  138. 138.
    Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(1):10.  https://doi.org/10.1186/1743-8977-2-10CrossRefGoogle Scholar
  139. 139.
    Kreyling WG, Semmler M, Moller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17(2):140–152.  https://doi.org/10.1089/0894268041457147CrossRefGoogle Scholar
  140. 140.
    Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447.  https://doi.org/10.1136/oem.2003.008227CrossRefGoogle Scholar
  141. 141.
    Brown DM, Stone V, Findlay P, MacNee W, Donaldson K (2000) Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 57(10):685–691.  https://doi.org/10.1136/oem.57.10.685CrossRefGoogle Scholar
  142. 142.
    Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):1–15.  https://doi.org/10.1080/10937400701436460CrossRefGoogle Scholar
  143. 143.
    Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210.  https://doi.org/10.1016/j.toxlet.2010.11.016CrossRefGoogle Scholar
  144. 144.
    Wang A, Pu K, Dong B, Liu Y, Zhang L, Zhang Z, Duan W, Zhu Y (2013) Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J Appl Toxicol 33(10):1156–1164.  https://doi.org/10.1002/jat.2877CrossRefGoogle Scholar
  145. 145.
    Zhao B, He YY, Bilski PJ, Chignell CF (2008) Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms. Chem Res Toxicol 21(5):1056–1063.  https://doi.org/10.1021/tx800056wCrossRefGoogle Scholar
  146. 146.
    Sera N, Tokiwa H, Miyata N (1996) Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17(10):2163–2169.  https://doi.org/10.1093/carcin/17.10.2163CrossRefGoogle Scholar
  147. 147.
    Azad N, Iyer AK, Wang L, Liu Y, Lu Y, Rojanasakul Y (2013) Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology 7(2):157–168.  https://doi.org/10.3109/17435390.2011.647929CrossRefGoogle Scholar
  148. 148.
    Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595.  https://doi.org/10.1016/j.biomaterials.2005.05.027CrossRefGoogle Scholar
  149. 149.
    Funahashi S, Okazaki Y, Ito D, Asakawa A, Nagai H, Tajima M, Toyokuni S (2015) Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells. J Clin Biochem Nutr 56(2):111–117.  https://doi.org/10.3164/jcbn.14-92CrossRefGoogle Scholar
  150. 150.
    Mohamed S, Upreti S, Rajendra S, Dang R (2017) Genotoxicity: mechanisms, testing guidelines and methods. Glob J Pharm Pharm Sci 1(5):555575Google Scholar
  151. 151.
    Shah SU (2012) Importance of genotoxicity & S2A guidelines for genotoxicity testing for pharmaceuticals. IOSR J Pharm Biol Sci 1(2):43–54Google Scholar
  152. 152.
    Oner D, Ghosh M, Bove H, Moisse M, Boeckx B, Duca RC, Poels K, Luyts K, Putzeys E, Van Landuydt K, Vanoirbeek JA, Ameloot M, Lambrechts D, Godderis L, Hoet PH (2018) Differences in MWCNT- and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Part Fibre Toxicol 15(1):11.  https://doi.org/10.1186/s12989-018-0244-6CrossRefGoogle Scholar
  153. 153.
    Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L (2018) Cancer epigenetics: moving forward. PLoS Genet 14(6):e1007362.  https://doi.org/10.1371/journal.pgen.1007362CrossRefGoogle Scholar
  154. 154.
    Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32(3–4):325–340.  https://doi.org/10.1007/s10555-013-9427-7CrossRefGoogle Scholar
  155. 155.
    Toyokuni S (2013) Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev 65(15):2098–2110.  https://doi.org/10.1016/j.addr.2013.05.011CrossRefGoogle Scholar
  156. 156.
    Babynin EV, Nuretdinov IA, Gubskaia VP, Barabanshchikov BI (2002) Study of mutagenic activity of fullerene and some of its derivatives using His+ reversions of Salmonella typhimurium as an example. Genetika 38(4):453–457.  https://doi.org/10.1023/a:1015237916596CrossRefGoogle Scholar
  157. 157.
    Guo F, Ma N, Horibe Y, Kawanishi S, Murata M, Hiraku Y (2012) Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells. Toxicol Appl Pharmacol 260(2):183–192.  https://doi.org/10.1016/j.taap.2012.02.010CrossRefGoogle Scholar
  158. 158.
    Qiao Y, An J, Ma L (2013) Single cell array based assay for in vitro genotoxicity study of nanomaterials. Anal Chem 85(8):4107–4112.  https://doi.org/10.1021/ac400242wCrossRefGoogle Scholar
  159. 159.
    De Marzi L, Ottaviano L, Perrozzi F, Nardone M, Santucci S, De Lapuente J, Borras M, Treossi E, Palermo V, Poma A (2014) Flake size-dependent cyto and genotoxic evaluation of graphene oxide on in vitro A549, CaCo2 and vero cell lines. J Biol Regul Homeost Agents 28(2):281–289Google Scholar
  160. 160.
    Jacobsen NR, White PA, Gingerich J, Moller P, Saber AT, Douglas GR, Vogel U, Wallin H (2011) Mutation spectrum in FE1-MUTA(TM) mouse lung epithelial cells exposed to nanoparticulate carbon black. Environ Mol Mutagen 52(4):331–337.  https://doi.org/10.1002/em.20629CrossRefGoogle Scholar
  161. 161.
    Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, Kaiser JP, Krug HF, Rothen-Rutishauser B, Wick P (2011) A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 200(3):176–186.  https://doi.org/10.1016/j.toxlet.2010.11.012CrossRefGoogle Scholar
  162. 162.
    Mrdanovic J, Solajic S, Bogdanovic V, Stankov K, Bogdanovic G, Djordjevic A (2009) Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat Res 680(1–2):25–30.  https://doi.org/10.1016/j.mrgentox.2009.08.008CrossRefGoogle Scholar
  163. 163.
    Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N, Hiyoshi K, Ogo S, Kawanishi M, Yagi T, Ichinose T, Fukumori N, Watanabe M, Sugimura T, Wakabayashi K (2009) Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol 6(1):23.  https://doi.org/10.1186/1743-8977-6-23CrossRefGoogle Scholar
  164. 164.
    De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110.  https://doi.org/10.1038/nrc3447CrossRefGoogle Scholar
  165. 165.
    Goossens S, Vandamme N, Van Vlierberghe P, Berx G (2017) EMT transcription factors in cancer development re-evaluated: beyond EMT and MET. Biochim Biophys Acta Rev Cancer 1868(2):584–591.  https://doi.org/10.1016/j.bbcan.2017.06.006CrossRefGoogle Scholar
  166. 166.
    Sato M, Shames DS, Hasegawa Y (2012) Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology 17(7):1048–1059.  https://doi.org/10.1111/j.1440-1843.2012.02173.xCrossRefGoogle Scholar
  167. 167.
    Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293(3):L525–L534.  https://doi.org/10.1152/ajplung.00163.2007CrossRefGoogle Scholar
  168. 168.
    He X, Despeaux E, Stueckle TA, Chi A, Castranova V, Dinu CZ, Wang L, Rojanasakul Y (2016) Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 311(3):L538–L549.  https://doi.org/10.1152/ajplung.00139.2016CrossRefGoogle Scholar
  169. 169.
    He X, Wang L, Riedel H, Wang K, Yang Y, Dinu CZ, Rojanasakul Y (2017) Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol Cancer 16(1):63.  https://doi.org/10.1186/s12943-017-0633-8CrossRefGoogle Scholar
  170. 170.
    Luanpitpong S, Wang L, Castranova V, Rojanasakul Y (2014) Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes. Part Fibre Toxicol 11:22.  https://doi.org/10.1186/1743-8977-11-22CrossRefGoogle Scholar
  171. 171.
    Luanpitpong S, Wang L, Manke A, Martin KH, Ammer AG, Castranova V, Yang Y, Rojansakul Y (2014) Induction of stemlike cells with fibrogenic properties by carbon nanotubes and its role in fibrogenesis. Nano Lett 14(6):3110–3116.  https://doi.org/10.1021/nl5002026CrossRefGoogle Scholar
  172. 172.
    Ajani JA, Song S, Hochster HS, Steinberg IB (2015) Cancer stem cells: the promise and the potential. Semin Oncol 42(Suppl 1):S3–S17.  https://doi.org/10.1053/j.seminoncol.2015.01.001CrossRefGoogle Scholar
  173. 173.
    Dawood S, Austin L, Cristofanilli M (2014) Cancer stem cells: implications for cancer therapy. Oncology (Williston Park) 28(12):1101–1107. 1110Google Scholar
  174. 174.
    Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76.  https://doi.org/10.1146/annurev-pathol-012615-044438CrossRefGoogle Scholar
  175. 175.
    Virani NA, Davis C, McKernan P, Hauser P, Hurst RE, Slaton J, Silvy RP, Resasco DE, Harrison RG (2018) Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology 29(3):035101.  https://doi.org/10.1088/1361-6528/aa9c0cCrossRefGoogle Scholar
  176. 176.
    Miao Y, Zhang H, Pan Y, Ren J, Ye M, Xia F, Huang R, Lin Z, Jiang S, Zhang Y, Songyang Z, Zhang Y (2017) Single-walled carbon nanotube: one specific inhibitor of cancer stem cells in osteosarcoma upon downregulation of the TGFbeta1 signaling. Biomaterials 149:29–40.  https://doi.org/10.1016/j.biomaterials.2017.09.032CrossRefGoogle Scholar
  177. 177.
    Vandamme TF (2014) Use of rodents as models of human diseases. J Pharm Bioallied Sci 6(1):2–9.  https://doi.org/10.4103/0975-7406.124301CrossRefGoogle Scholar
  178. 178.
    Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ (2016) The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 3(1):1.  https://doi.org/10.1186/s40634-015-0037-xCrossRefGoogle Scholar
  179. 179.
    Ellenbroek B, Youn J (2016) Rodent models in neuroscience research: is it a rat race? Dis Model Mech 9(10):1079–1087.  https://doi.org/10.1242/dmm.026120CrossRefGoogle Scholar
  180. 180.
    Reeves AL, Puro HE, Smith RG, Vorwald AJ (1971) Experimental asbestos carcinogenesis. Environ Res 4(6):496.  https://doi.org/10.1016/0013-9351(71)90010-7CrossRefGoogle Scholar
  181. 181.
    Mauderly JL (1997) Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk. Environ Health Perspect 105(Suppl 5):1337–1346.  https://doi.org/10.1289/ehp.97105s51337CrossRefGoogle Scholar
  182. 182.
    Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134.  https://doi.org/10.1093/toxsci/kfg243CrossRefGoogle Scholar
  183. 183.
    Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125.  https://doi.org/10.1093/toxsci/kfg228CrossRefGoogle Scholar
  184. 184.
    Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708.  https://doi.org/10.1152/ajplung.00084.2005CrossRefGoogle Scholar
  185. 185.
    Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4(4):221–233.  https://doi.org/10.1158/1541-7786.MCR-05-0261CrossRefGoogle Scholar
  186. 186.
    Bierkandt FS, Leibrock L, Wagener S, Laux P, Luch A (2018) The impact of nanomaterial characteristics on inhalation toxicity. Toxicol Res 7(3):321–346.  https://doi.org/10.1039/c7tx00242dCrossRefGoogle Scholar
  187. 187.
    Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4):L552–L565.  https://doi.org/10.1152/ajplung.90287.2008CrossRefGoogle Scholar
  188. 188.
    Bourdon JA, Halappanavar S, Saber AT, Jacobsen NR, Williams A, Wallin H, Vogel U, Yauk CL (2012) Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol Sci 127(2):474–484.  https://doi.org/10.1093/toxsci/kfs119CrossRefGoogle Scholar
  189. 189.
    Bourdon JA, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS, Wallin H, Moller P, Loft S, Yauk CL, Vogel UB (2012) Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol 9(1):5.  https://doi.org/10.1186/1743-8977-9-5CrossRefGoogle Scholar
  190. 190.
    Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U (2015) DNA damage following pulmonary exposure by instillation to low doses of carbon black (Printex 90) nanoparticles in mice. Environ Mol Mutagen 56(1):41–49.  https://doi.org/10.1002/em.21888CrossRefGoogle Scholar
  191. 191.
    Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246.  https://doi.org/10.3109/17435390903569639CrossRefGoogle Scholar
  192. 192.
    Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 65(15):2078–2086.  https://doi.org/10.1016/j.addr.2013.07.014CrossRefGoogle Scholar
  193. 193.
    Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB (2009) Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):511–529.  https://doi.org/10.1002/wnan.41CrossRefGoogle Scholar
  194. 194.
    Moller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S (2014) Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 88(11):1939–1964.  https://doi.org/10.1007/s00204-014-1356-xCrossRefGoogle Scholar
  195. 195.
    Moller P, Jensen DM, Christophersen DV, Kermanizadeh A, Jacobsen NR, Hemmingsen JG, Danielsen PH, Karottki DG, Roursgaard M, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S (2015) Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. Environ Mol Mutagen 56(2):97–110.  https://doi.org/10.1002/em.21899CrossRefGoogle Scholar
  196. 196.
    Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7(8):2399–2406.  https://doi.org/10.1021/nl0710710CrossRefGoogle Scholar
  197. 197.
    Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA (2008) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101(1):122–131.  https://doi.org/10.1093/toxsci/kfm243CrossRefGoogle Scholar
  198. 198.
    Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, Karg E, Mossa C, Schroeppel A, Ferron GA, Heyder J, Greaves M, MacNee W, Donaldson K (2004) Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 195(1):35–44.  https://doi.org/10.1016/j.taap.2003.10.003CrossRefGoogle Scholar
  199. 199.
    Schreiber N, Strobele M, Kopf J, Hochscheid R, Kotte E, Weber P, Hansen T, Bockhorn H, Muller B (2013) Lung alterations following single or multiple low-dose carbon black nanoparticle aspirations in mice. J Toxicol Environ Health A 76(24):1317–1332.  https://doi.org/10.1080/15287394.2013.853634CrossRefGoogle Scholar
  200. 200.
    Bonner JC (2007) Lung fibrotic responses to particle exposure. Toxicol Pathol 35(1):148–153.  https://doi.org/10.1080/01926230601060009CrossRefGoogle Scholar
  201. 201.
    Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22.  https://doi.org/10.1093/toxsci/kfj130CrossRefGoogle Scholar
  202. 202.
    Shvedova AA, Tkach AV, Kisin ER, Khaliullin T, Stanley S, Gutkin DW, Star A, Chen Y, Shurin GV, Kagan VE, Shurin MR (2013) Carbon nanotubes enhance metastatic growth of lung carcinoma via up-regulation of myeloid-derived suppressor cells. Small 9(9–10):1691–1695.  https://doi.org/10.1002/smll.201201470CrossRefGoogle Scholar
  203. 203.
    Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244(2):226–233.  https://doi.org/10.1016/j.taap.2009.12.036CrossRefGoogle Scholar
  204. 204.
    Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, Endoh S, Shimada M, Ogami A, Myojyo T, Oyabu T, Gamo M, Kishimoto A, Igarashi T, Hanai S (2015) Risk assessment of the carbon nanotube group. Risk Anal 35(10):1940–1956.  https://doi.org/10.1111/risa.12394CrossRefGoogle Scholar
  205. 205.
    Liao C, Li Y, Tjong SC (2018) Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 19(11):3564.  https://doi.org/10.3390/ijms19113564CrossRefGoogle Scholar
  206. 206.
    Kobayashi N, Izumi H, Morimoto Y (2017) Review of toxicity studies of carbon nanotubes. J Occup Health 59(5):394–407.  https://doi.org/10.1539/joh.17-0089-RACrossRefGoogle Scholar
  207. 207.
    Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K, Grp IARCM (2014) Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 15(13):1427–1428.  https://doi.org/10.1016/S1470-2045(14)71109-XCrossRefGoogle Scholar
  208. 208.
    Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P (2014) High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8(3):2118–2133.  https://doi.org/10.1021/nn404871pCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences and West Virginia University Cancer InstituteWest Virginia UniversityMorgantownUSA

Personalised recommendations