Advertisement

Evaluation of Biodistribution, Toxicology, and Toxicologic Pathology of Nanomaterials Used to Deliver Nucleic Acids

  • H. Denny LiggittEmail author
Chapter
  • 208 Downloads

Abstract

The evaluation of the biodistribution and toxicology, including toxicologic pathology, of any therapeutic candidate is performed as an essential part of its development and, ultimately, its translation into the clinic. The research-based optimization and preclinical development of therapeutics delivered with nanoparticles (NPS) have been the subject of immense effort generating large numbers of publications but leading to relatively few actual applications. The principal reason for this is that this particular bench to bedside translation is fraught with numerous and variable scientific challenges. While in vitro screening may play a significant role in early development of many types of pharmaceuticals in the case of NPS, much of the burden falls on understanding the linkage between biodistribution, toxicology, and toxicologic pathology by emphasizing in vivo evaluation. Hence, the goal of this review is to better understand the current issues facing the early to late preclinical evaluation of various NPS by focusing on those being developed as nucleic acid carriers with the intent of eventually translating them into the clinic. While the emphasis will be on evaluation of NPS designated for delivery of nucleic acids, the basic principles can apply to NPS being developed for other medical uses.

References

  1. 1.
    Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8(2):1–22CrossRefGoogle Scholar
  2. 2.
    Kaemmerer WF (2018) How will the field of gene therapy survive its success? Bioeng Transl Med 3(2):166–177CrossRefGoogle Scholar
  3. 3.
    Ozcan G, Ozpolat B, Coleman RL, Sood AK, Medicine R (2016) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119CrossRefGoogle Scholar
  4. 4.
    Xue HY, Tran N, Wong HL (2016) A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. Eur J Pharm Biopharm 108:68–75CrossRefGoogle Scholar
  5. 5.
    Scheinberg DA, Grimm J, Heller DA, Stater EP, Bradbury M, McDevitt MR (2017) Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol 46(1):66–73CrossRefGoogle Scholar
  6. 6.
    Xue HY, Liu S, Wong HL (2014) Nanotoxicity: a key obstacle to clinical translation of sirna-based nanomedicine. Nanomedicine 9(2):295–312CrossRefGoogle Scholar
  7. 7.
    Barros SA, Gollob JA (2012) Safety profile of RNAi nanomedicines. Adv Drug Deliv Rev 64(15):1730–1737CrossRefGoogle Scholar
  8. 8.
    Brand W, Noorlander CW, Giannakou C, De Jong WH, Kooi MW, Park MVDZ, Vandebriel RJ, Bosselaers IEM, Scholl JHG, Geertsma RE (2017) Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomedicine 12:6107–6129CrossRefGoogle Scholar
  9. 9.
    Frazier KS, Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW et al (2015) Scientific and regulatory policy committee points-to-consider paper: drug-induced vascular injury associated with nonsmall molecule therapeutics in preclinical development: part 2. Antisense oligonucleotides. Toxicol Pathol 43(7):935–944CrossRefGoogle Scholar
  10. 10.
    Halamoda-Kenzaoui B, Bremer-Hoffmann S (2018) Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine 13:5419–5431CrossRefGoogle Scholar
  11. 11.
    Kornbrust D, Cavagnaro J, Levin A, Foy J, Pavco P, Gamba-Vitalo C et al (2013) Oligo safety working group exaggerated pharmacology subcommittee consensus document. Nucleic Acid Ther 23(1):21–28CrossRefGoogle Scholar
  12. 12.
    Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105CrossRefGoogle Scholar
  13. 13.
    Owen K (2013) Regulatory toxicology considerations for the development of inhaled pharmaceuticals. Drug Chem Toxicol 36(1):109–118CrossRefGoogle Scholar
  14. 14.
    Sainz V, Conniot J, Matos AI, Peres C, Zupančič E, Moura L et al (2015) Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 468(3):504–510CrossRefGoogle Scholar
  15. 15.
    Greish K, Thiagarajan G, Ghandehari H (2012) In vivo methods of nanotoxicology. In: Reineke J (ed) Nanotoxicity: methods and protocols. Methods in molecular biology, vol 926. Humana Press, New York, pp 235–254CrossRefGoogle Scholar
  16. 16.
    Eifler AC, Thaxton CS (2011) Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. In: Hurst SJ (ed) Biomedical nanotechnology: methods and protocols. Methods in molecular biology, vol 726. Humana Press, New York, pp 325–338CrossRefGoogle Scholar
  17. 17.
    Assaf BT, Whiteley LO (2018) Considerations for preclinical safety assessment of adeno-associated virus gene therapy products. Toxicol Pathol 46(8):1020–1027CrossRefGoogle Scholar
  18. 18.
    Giannakou C, Park MVDZ, De Jong WH, Van Loveren H, Vandebriel RJ, Geertsma RE (2016) A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine 11:2935–2952CrossRefGoogle Scholar
  19. 19.
    Merzouki A, Alameh M, DeJesus D, Jean M, Darras V, Thibault M et al (2012) Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int J Nanomedicine 7:1399–1414CrossRefGoogle Scholar
  20. 20.
    Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129CrossRefGoogle Scholar
  21. 21.
    Tousignant JD, Zhao H, Yew NS, Cheng SH, Eastman SJ, Scheule RK (2003) DNA sequences in cationic lipid:pDNA-mediated systemic toxicities. Hum Gene Ther 14(3):203–214CrossRefGoogle Scholar
  22. 22.
    Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R et al (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci 111(31):11449–11454CrossRefGoogle Scholar
  23. 23.
    McNeil SE (ed) (2018) Characterization of nanoparticles intended for drug delivery. Methods in molecular biology, vol 1682. Humana Press, New York, pp 3–254CrossRefGoogle Scholar
  24. 24.
    Faqi AS (2017) Toxicology in preclinical drug development. In: Faqi AS (ed) 2nd ed. Academic/Elsevier, LondonGoogle Scholar
  25. 25.
    Guan S, Rosenecker J (2017) Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 24(3):133–143CrossRefGoogle Scholar
  26. 26.
    Li L, Hu S, Chen X (2018) Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171:207–218CrossRefGoogle Scholar
  27. 27.
    Mastorakos P, da Silva AL, Chisholm J, Song E, Choi WK, Boyle MP et al (2015) Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci 112(28):8720–8725CrossRefGoogle Scholar
  28. 28.
    Thess A, Grund S, Mui BL, Hope MJ, Baumhof P, Fotin-Mleczek M et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 23(9):1456–1464CrossRefGoogle Scholar
  29. 29.
    Wang Y, Miao L, Satterlee A, Huang L (2015) Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev 87:68–80CrossRefGoogle Scholar
  30. 30.
    Slivac I, Guay D, Mangion M, Champeil J, Gaillet B, Silvac I, Guay D, Mangion M, Champeil J, Gallet B (2017) Non-viral nucleic acid delivery methods. Expert Opin Biol Ther 17(1):105–118CrossRefGoogle Scholar
  31. 31.
    Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25(7):1467–1475CrossRefGoogle Scholar
  32. 32.
    Keles E, Song Y, Du D, Dong WJ, Lin Y (2016) Recent progress in nanomaterials for gene delivery applications. Biomater Sci 4(9):1291–1309CrossRefGoogle Scholar
  33. 33.
    Khan M, Ong ZY, Wiradharma N, Attia ABE, Yang YY (2012) Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Health Mater 1(4):373–392CrossRefGoogle Scholar
  34. 34.
    Wong JKL, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM (2017) Will nanotechnology bring new hope for gene delivery? Trends Biotechnol 35(5):434–451CrossRefGoogle Scholar
  35. 35.
    Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C et al (2017) The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 37(12):1359–1369CrossRefGoogle Scholar
  36. 36.
    Zhang P, An K, Duan X, Xu H, Li F, Xu F (2018) Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov Today 23(4):900–911CrossRefGoogle Scholar
  37. 37.
    Zakeri A, Kouhbanani M, Beheshtkhoo N, Beigi V, Mousavi S, Hashemi S et al (2018) Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exper 9(1):1488497.  https://doi.org/10.1080/2002272CrossRefGoogle Scholar
  38. 38.
    Freimark BD, Blezinger HP, Florack VJ, Nordstrom JL, Long SD, Deshpande DS et al (1998) Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J Immunol 160(9):4580–4586Google Scholar
  39. 39.
    Scheule RK, St. George JA, Bagley RG, Marshall J, Kaplan JM, Akita KX et al (1997) Basis of pulmonary gene toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther 707:689–707CrossRefGoogle Scholar
  40. 40.
    Dow SW, Fradkin LG, Liggitt DH, Willson AP, Heath TD, Potter TA et al (1999) Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 163(3):1552–1561Google Scholar
  41. 41.
    Whitmore M, Li S, Huang L (1999) LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther 6(11):1867–1875CrossRefGoogle Scholar
  42. 42.
    Tousignant J, Gates A, Ingram L, Johnson C, Nietupski J, Cheng S et al (2000) Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: plasmid DNA complexes in mice. Hum Gene Ther 11:2493–2513CrossRefGoogle Scholar
  43. 43.
    Dobrovolskaia MA, McNeil SE (2015) Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther 15(7):1023–1048CrossRefGoogle Scholar
  44. 44.
    Moghimi SM, Wagner E (2017) Nanoparticle technology: having impact, but needing further optimization. Mol Ther 25(7):1461–1463CrossRefGoogle Scholar
  45. 45.
    Wilson KD, Raney SG, Sekirov L, Chikh G, deJong SD, Cullis PR et al (2007) Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int Immunopharmacol 7(8):1064–1075CrossRefGoogle Scholar
  46. 46.
    Walker WE, Booth CJ, Goldstein DR (2010) TLR9 and IRF3 cooperate to induce a systemic inflammatory response in mice injected with liposome:DNA. Mol Ther 18(4):775–784CrossRefGoogle Scholar
  47. 47.
    Liang X, Liu L, Wei Y-Q, Gao G-P, Wei X-W (2018) Clinical evaluations of toxicity and efficacy of nanoparticle-mediated gene therapy. Hum Gene Ther 29(11):1227–1234CrossRefGoogle Scholar
  48. 48.
    Meng Z, Lu M (2017) RNA interference-induced innate immunity, off-target effect, or immune adjuvant? Front Immunol 8:1–7Google Scholar
  49. 49.
    Robbins M, Judge A, Ambegia E, Choi C, Yaworski E, Palmer L, McClintock K, MacLachlan I (2008) Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimuli. Hum Gene Ther 19:991–999CrossRefGoogle Scholar
  50. 50.
    Heidel JD, Yu Z, Liu JY-C, Rele SM, Liang Y, Zeidan RK et al (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci 104(14):5715–5721CrossRefGoogle Scholar
  51. 51.
    Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H (2007) Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull 30(4):751–757CrossRefGoogle Scholar
  52. 52.
    Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X et al (2017) Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 115:115–154CrossRefGoogle Scholar
  53. 53.
    Novo L, Mastrobattista E, van Nostrum CF, Lammers T, Hennink WE (2015) Decationized polyplexes for gene delivery. Expert Opin Drug Deliv 12(4):507–512CrossRefGoogle Scholar
  54. 54.
    Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM (2017) Polyplex evolution: understanding biology, optimizing performance. Mol Ther 25(7):1476–1490CrossRefGoogle Scholar
  55. 55.
    Raftery R, O’Brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18(5):5611–5647CrossRefGoogle Scholar
  56. 56.
    Abdelhalim MAK, Abdelmottaleb Moussa SA (2013) The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: in vivo. Saudi J Biol Sci 20(2):177–181CrossRefGoogle Scholar
  57. 57.
    Dykman LA, Khlebtsov NG (2017) Immunological properties of gold nanoparticles. Chem Sci 8(3):1719–1735CrossRefGoogle Scholar
  58. 58.
    Khan HA, Abdelhalim MAK, Alhomida AS, Al-Ayed MS (2013) Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. Biomed Res Int.  https://doi.org/10.1155/2013/590730Google Scholar
  59. 59.
    Khan HA, Ibrahim KE, Khan A, Alrokayan SH, Alhomida AS, Lee YK (2016) Comparative evaluation of immunohistochemistry and real-time PCR for measuring proinflammatory cytokines gene expression in livers of rats treated with gold nanoparticles. Exp Toxicol Pathol 68(7):381–390CrossRefGoogle Scholar
  60. 60.
    Mendes R, Fernandes AR, Baptista PV (2017) Gold nanoparticle approach to the selective delivery of gene silencing in cancer-the case for combined delivery? Genes (Basel) 8(3):94.  https://doi.org/10.3390/genes8030094CrossRefGoogle Scholar
  61. 61.
    Shah A, Dobrovolskaia MA (2018) Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomed Nanotechnol Biol Med 14(3):977–990CrossRefGoogle Scholar
  62. 62.
    Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K et al (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246CrossRefGoogle Scholar
  63. 63.
    Zhao X, Li X, Zhao Y, Cheng Y, Yang Y, Fang Z et al (2017) Immune activities of polycationic vectors for gene delivery. Front Pharmacol 8:1–8Google Scholar
  64. 64.
    Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to sirna and its delivery vehicles. Mol Ther 20(3):513–524CrossRefGoogle Scholar
  65. 65.
    Ajdary M, Moosavi M, Rahmati M, Falahati M, Mahboubi M, Mandegary A et al (2018) Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials 8(9):634.  https://doi.org/10.3390/nano8090634CrossRefGoogle Scholar
  66. 66.
    Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):44.  https://doi.org/10.1186/s11671-018-2457-xCrossRefGoogle Scholar
  67. 67.
    Liu F, Huang H, Gong Y, Li J, Zhang X, Cao Y (2017) Evaluation of in vitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chem Biol Interact 263:46–54CrossRefGoogle Scholar
  68. 68.
    Smith MJ, Brown JM, Zamboni WC, Walker NJ (2014) From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol Sci 138(2):249–255CrossRefGoogle Scholar
  69. 69.
    Guo S, Li H, Ma M, Fu J, Dong Y, Guo P (2017) Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol Ther Nucleic Acids 9:399–408CrossRefGoogle Scholar
  70. 70.
    Hong E, Halman JR, Shah AB, Khisamutdinov EF, Dobrovolskaia MA, Afonin KA (2018) Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett 18(7):4309–4321CrossRefGoogle Scholar
  71. 71.
    Pizzuto M, Gangloff M, Scherman D, Gay NJ, Escriou V, Ruysschaert JM et al (2017) Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers. J Control Release 247:182–193CrossRefGoogle Scholar
  72. 72.
    Sato Y, Matsui H, Yamamoto N, Sato R, Munakata T, Kohara M et al (2017) Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J Control Release 266:216–225CrossRefGoogle Scholar
  73. 73.
    Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H (2008) Innate immune response induced by gene delivery vectors. Int J Pharm 354(1–2):9–15CrossRefGoogle Scholar
  74. 74.
    Dobrovolskaia MA, Shurin M, Shvedova AA (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 299:78–89CrossRefGoogle Scholar
  75. 75.
    Huaux F (2018) Emerging role of immunosuppression in diseases induced by micro- and nano-particles: time to revisit the exclusive inflammatory scenario. Front Immunol 9:2364.  https://doi.org/10.3389/fimmu.2018.02364CrossRefGoogle Scholar
  76. 76.
    Alsaleh NB, Brown JM (2018) Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol 10:8–14CrossRefGoogle Scholar
  77. 77.
    Peer D (2012) Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev 64(15):1738–1748CrossRefGoogle Scholar
  78. 78.
    Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B et al (2017) Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 34:33–51CrossRefGoogle Scholar
  79. 79.
    Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S (2016) Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cells Nanomed Biotechnol 44(1):83–91CrossRefGoogle Scholar
  80. 80.
    Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977CrossRefGoogle Scholar
  81. 81.
    Li Y, Fujita M, Boraschi D (2017) Endotoxin contamination in nanomaterials leads to the misinterpretation of immunosafety results. Front Immunol 8:1–7Google Scholar
  82. 82.
    Li Y, Shi Z, Radauer-Preiml I, Andosch A, Casals E, Luetz-Meindl U et al (2017) Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology 11(9–10):1157–1175CrossRefGoogle Scholar
  83. 83.
    Ilinskaya AN, Dobrovolskaia MA (2016) Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol 299:70–77CrossRefGoogle Scholar
  84. 84.
    Kumar V, Qin J, Jiang Y, Duncan RG, Brigham B, Fishman S et al (2014) Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol Ther Nucleic Acids 3:e210.  https://doi.org/10.1038/mtna.2014.61CrossRefGoogle Scholar
  85. 85.
    Jiao Q, Li L, Mu Q, Zhang Q (2014) Immunomodulation of nanoparticles in nanomedicine applications. Biomed Res Int.  https://doi.org/10.1155/2014/426028Google Scholar
  86. 86.
    Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35(2):180–188CrossRefGoogle Scholar
  87. 87.
    Elsabahy M, Wooley KL (2013) Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev 42(12):5552–5576CrossRefGoogle Scholar
  88. 88.
    Liu L, Liu Y, Xu B, Liu C, Jia Y, Liu T et al (2018) Negative regulation of cationic nanoparticle-induced inflammatory toxicity through the increased production of prostaglandin E2 via mitochondrial DNA-activated Ly6C+ monocytes. Theranostics 8(11):3138–3152CrossRefGoogle Scholar
  89. 89.
    Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B et al (2017) Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 34:3–24CrossRefGoogle Scholar
  90. 90.
    Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly 142:1–9Google Scholar
  91. 91.
    Lonez C, Bessodes M, Scherman D, Vandenbranden M, Escriou V, Ruysschaert JM (2014) Cationic lipid nanocarriers activate toll-like receptor 2 and NLRP3 inflammasome pathways. Nanomed Nanotechnol Biol Med 10(4):775–782CrossRefGoogle Scholar
  92. 92.
    Fang J-Y, Hwang T, Aljuffali IA, Lin C, Chang C-C (2015) Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. Int J Nanomedicine 10:371–385CrossRefGoogle Scholar
  93. 93.
    Bazzani RP, Pringle IA, Connolly MM, Davies LA, Sumner-Jones SG, Schleef M et al (2016) Transgene sequences free of CG dinucleotides lead to high level, long-term expression in the lung independent of plasmid backbone design. Biomaterials 93:20–26CrossRefGoogle Scholar
  94. 94.
    Haas T, Metzger J, Schmitz F, Heit A, Müller T, Latz E et al (2008) The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28(3):315–323CrossRefGoogle Scholar
  95. 95.
    Ilinskaya AN, Dobrovolskaia MA (2016) Program T. nanomaterials: past, present and future. Toxicol Appl Pharmacol 299:70–77Google Scholar
  96. 96.
    Ori D, Murase M, Kawai T (2017) Cytosolic nucleic acid sensors and innate immune regulation. Int Rev Immunol 36(2):74–88CrossRefGoogle Scholar
  97. 97.
    van Meer L, Moerland M, Gallagher J, van Doorn MBA, Prens EP, Cohen AF et al (2016) Injection site reactions after subcutaneous oligonucleotide therapy. Br J Clin Pharmacol 82(2):340–351CrossRefGoogle Scholar
  98. 98.
    Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488CrossRefGoogle Scholar
  99. 99.
    Yu B, Mao Y, Bai LY, Herman SEM, Wang X, Ramanunni A et al (2013) Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood 121(1):136–147CrossRefGoogle Scholar
  100. 100.
    Chen S, Zaifman J, Kulkarni JA, Zhigaltsev IV, Tam YK, Ciufolini MA et al (2018) Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. J Control Release 286:46–54CrossRefGoogle Scholar
  101. 101.
    Abrams MT, Koser ML, Seitzer J, Williams SC, Dipietro MA, Wang W et al (2010) Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther 18(1):171–180CrossRefGoogle Scholar
  102. 102.
    Bierkandt FS, Leibrock L, Wagener S, Laux P, Luch A (2018) The impact of nanomaterial characteristics on inhalation toxicity. Toxicol Res (Camb) 7(3):321–346CrossRefGoogle Scholar
  103. 103.
    Chen J, Guo Z, Tian H, Chen X (2016) Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 3.  https://doi.org/10.1038/mtm.2016.23CrossRefGoogle Scholar
  104. 104.
    Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A et al (2016) Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol Lett 257:23–37CrossRefGoogle Scholar
  105. 105.
    Jasmine L, Muralikrishnan S, Ng C-T, Yung L-YL, Bay B-H (2010) Nanoparticle-induced pulmonary toxicity. Exp Biol Med 235:1025–1033CrossRefGoogle Scholar
  106. 106.
    Rahman L, Jacobsen NR, Aziz SA, Wu D, Williams A, Yauk CL et al (2017) Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: investigating the mechanisms of pulmonary carcinogenesis. Mutat Res Genet Toxicol Environ Mutagen 823:28–44CrossRefGoogle Scholar
  107. 107.
    Hayes AJ, Bakand S (2014) Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxico 10(7):933–947CrossRefGoogle Scholar
  108. 108.
    Blank F, Fytianos K, Seydoux E, Rodriguez-Lorenzo L, Petri-Fink A, Garnier C et al (2017) Interaction of biomedical nanoparticles with the pulmonary immune system. J Nanobiotechnol 15(1):1–9CrossRefGoogle Scholar
  109. 109.
    Donnelley M, Parsons DW, Duncan G (2018) Gene therapy for cystic fibrosis lung disease: Overcoming the barriers to translation to the clinic. Front Pharmacol 9:1–8CrossRefGoogle Scholar
  110. 110.
    Ruiz FE, Clancy JP, Perricone MA, Bebok Z, Hong JS, Cheng SH et al (2001) A clinical inflammatory syndrome attributable to aerosolized lipid–DNA administration in cystic fibrosis. Hum Gene Ther 12(7):751–761CrossRefGoogle Scholar
  111. 111.
    Alton EWFW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield EV et al (2015) Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 3(9):684–691CrossRefGoogle Scholar
  112. 112.
    Alton EWFW, Boyd AC, Cheng SH, Davies JC, Davies LA, Dayan A et al (2014) Toxicology study assessing efficacy and safety of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther 21(1):89–95CrossRefGoogle Scholar
  113. 113.
    Robinson E, MacDonald KD, Slaughter K, McKinney M, Patel S, Sun C et al (2018) Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther 26(8):2034–2046CrossRefGoogle Scholar
  114. 114.
    Schleifman EB, McNeer NA, Jackson A, Yamtich J, Brehm MA, Shultz LD et al (2013) Site-specific genome editing in PBMCs with PLGA nanoparticle-delivered PNAs confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids 2:e135.  https://doi.org/10.1038/mtna.2013.59CrossRefGoogle Scholar
  115. 115.
    McLachlan G, Davidson H, Holder E, Davies LA, Pringle IA, Sumner-Jones SG et al (2011) Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther 18(10):996–1005CrossRefGoogle Scholar
  116. 116.
    McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM (2011) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 19(1):172–180CrossRefGoogle Scholar
  117. 117.
    Andries O, De Filette M, De Smedt SC, Demeester J, Van Poucke M, Peelman L et al (2013) Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells. J Control Release 167(2):157–166CrossRefGoogle Scholar
  118. 118.
    Mastorakos P, Zhang C, Song E, Kim YE, Park HW, Berry S et al (2017) Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors. J Control Release 262:37–46CrossRefGoogle Scholar
  119. 119.
    Tarhini AA, Belani CP, Luketich JD, Argiris A, Ramalingam SS, Gooding W et al (2011) A phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase plasmid liposome protection in patients with locally advanced stage III non-small-sell lung cancer. Hum Gene Ther 22(3):336–342CrossRefGoogle Scholar
  120. 120.
    Őrfi E, Szebeni J (2016) The immune system of the gut and potential adverse effects of oral nanocarriers on its function. Adv Drug Deliv Rev 106:402–409CrossRefGoogle Scholar
  121. 121.
    Akelley RA, Conley SM, Makkia R, Watson JN, Han Z, Cooper MJ et al (2018) DNA nanoparticles are safe and nontoxic in non-human primate eyes. Int J Nanomedicine 13:1361–1379CrossRefGoogle Scholar
  122. 122.
    Alvarez RD, Sill MW, Davidson SA, Muller CY, Bender DP, Debernardo RL et al (2014) A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: a Gynecologic Oncology group study. Gynecol Oncol 133(3):433–438CrossRefGoogle Scholar
  123. 123.
    Turnbull IC, Eltoukhy AA, Fish KM, Nonnenmacher M, Ishikawa K, Chen J et al (2016) Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Mol Ther 24(1):66–75CrossRefGoogle Scholar
  124. 124.
    Knorr F, Patzelt A, Darvin ME, Lehr CM, Schäfer U, Gruber AD et al (2016) Penetration of topically applied nanocarriers into the hair follicles of dog and rat dorsal skin and porcine ear skin. Vet Dermatol 27(4):256–e60.  https://doi.org/10.1111/vde.12325CrossRefGoogle Scholar
  125. 125.
    Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y et al (2010) Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147(3):342–349CrossRefGoogle Scholar
  126. 126.
    Slütter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 154(2):123–130CrossRefGoogle Scholar
  127. 127.
    Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247CrossRefGoogle Scholar
  128. 128.
    Sato T, Shimosato T, Ueda A, Ishigatsubo Y, Klinman DM (2015) Intrapulmonary delivery of CpG microparticles eliminates lung tumors. Mol Cancer Ther 14(10):2198–2205CrossRefGoogle Scholar
  129. 129.
    An M, Yu C, Xi J, Reyes J, Mao G, Wei WZ et al (2018) Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale 10(19):9311–9319CrossRefGoogle Scholar
  130. 130.
    Poecheim J, Heuking S, Brunner L, Barnier-Quer C, Collin N, Borchard G (2015) Nanocarriers for DNA vaccines: co-delivery of TLR-9 and NLR-2 ligands leads to synergistic enhancement of proinflammatory cytokine release. Nanomaterials 5(4):2317–2334CrossRefGoogle Scholar
  131. 131.
    Klinman DM, Sato T, Shimosato T (2016) Use of nanoparticles to deliver immunomodulatory oligonucleotides. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(4):631–637CrossRefGoogle Scholar
  132. 132.
    Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT (2014) Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 10(6):2643–2652CrossRefGoogle Scholar
  133. 133.
    Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL (2016) Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(6):842–871CrossRefGoogle Scholar
  134. 134.
    Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM (2015) Inhalable nanoparticulate powders for respiratory delivery. Nanomed Nanotechnol Biol Med 11(5):1189–1199CrossRefGoogle Scholar
  135. 135.
    Raliya R, Singh Chadha T, Haddad K, Biswas P (2016) Perspective on nanoparticle technology for biomedical use. Curr Pharm Des 22(17):2481–2490CrossRefGoogle Scholar
  136. 136.
    Beck-Broichsitter M, Merkel OM, Kissel T (2012) Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 161(2):214–224CrossRefGoogle Scholar
  137. 137.
    Roberts RA, Shen T, Allen IC, Hasan W, DeSimone JM, Ting JPY (2013) Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles. PLoS One 8(4):e62115.  https://doi.org/10.1371/journal.pone.0062115CrossRefGoogle Scholar
  138. 138.
    Lu X, Howard MD, Mazik M, Eldridge J, Rinehart JJ, Jay M et al (2008) Nanoparticles containing anti-inflammatory agents as chemotherapy adjuvants: optimization and in vitro characterization. AAPS J 10(1):133–140CrossRefGoogle Scholar
  139. 139.
    Borm P, Cassee FR, Oberdörster G (2015) Lung particle overload: old school -new insights? Part Fibre Toxicol 12(1):1–5CrossRefGoogle Scholar
  140. 140.
    Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495CrossRefGoogle Scholar
  141. 141.
    Szebeni J (2018) Mechanism of nanoparticle-induced hypersensitivity in pigs: complement or not complement? Drug Discov Today 23(3):487–492CrossRefGoogle Scholar
  142. 142.
    Szebeni J (2014) Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol 61(2):163–173CrossRefGoogle Scholar
  143. 143.
    Szebeni J, Bedocs P, Rozsnyay Z, Weiszhár Z, Urbanics R, Rosivall L et al (2012) Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomed Nanotechnol Biol Med 8(2):176–184CrossRefGoogle Scholar
  144. 144.
    Dézsi L, Fülöp T, Mészáros T, Szénási G, Urbanics R, Vázsonyi C et al (2014) Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses. J Control Release 195:2–10CrossRefGoogle Scholar
  145. 145.
    Brain JD, Molina RM, DeCamp MM, Warner AE (1999) Pulmonary intravascular macrophages: their contribution to the mononuclear phagocyte system in 13 species. AJP Lung Cell Mol Physiol 276(1):L146–L154CrossRefGoogle Scholar
  146. 146.
    Csukás D, Urbanics R, Wéber G, Rosivall L, Szebeni J (2015) Pulmonary intravascular macrophages: prime suspects as cellular mediators of porcine CARPA. Eur J Nanomed 7(1):27–36CrossRefGoogle Scholar
  147. 147.
    Zamboni WC, Szebeni J, Kozlov SV, Lucas AT, Piscitelli JA, Dobrovolskaia MA (2018) Animal models for analysis of immunological responses to nanomaterials: challenges and considerations. Adv Drug Deliv Rev 136–137:82–96CrossRefGoogle Scholar
  148. 148.
    Matuszak J, Silva E, Almer G, Metselaar JM (2016) Nanoparticles for intravascular applications: physicochemical characterization. Nanomedicine (Lond) 11:597–616CrossRefGoogle Scholar
  149. 149.
    Mauricio MD, Guerra-Ojeda S, Marchio P, Valles SL, Aldasoro M, Escribano-Lopez I et al (2018) Nanoparticles in medicine: a focus on vascular oxidative stress. Oxidative Med Cell Longev.  https://doi.org/10.1155/2018/6231482CrossRefGoogle Scholar
  150. 150.
    Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8(5):773–784CrossRefGoogle Scholar
  151. 151.
    Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G et al (2012) Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6(11):9900–9910CrossRefGoogle Scholar
  152. 152.
    Fröhlich E (2016) Action of nanoparticles on platelet activation and plasmatic coagulation. Curr Med Chem 23(5):408–430CrossRefGoogle Scholar
  153. 153.
    Chi X, Gatti P, Papoian T (2017) Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today 22(5):823–833CrossRefGoogle Scholar
  154. 154.
    Simak J, De Paoli S (2017) The effects of nanomaterials on blood coagulation in hemostasis and thrombosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5):1–16CrossRefGoogle Scholar
  155. 155.
    Witzigmann D, Hak S, van der Meel R (2018) Translating nanomedicines: thinking beyond materials? A young investigator’s reply to ‘the novelty bubble’. J Control Release 290:138–140CrossRefGoogle Scholar
  156. 156.
    Dobrovolskaia MA (2015) Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release 220(Pt B):571–583CrossRefGoogle Scholar
  157. 157.
    Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466CrossRefGoogle Scholar
  158. 158.
    Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62(3):362–374CrossRefGoogle Scholar
  159. 159.
    Kermanizadeh A, Gaiser BK, Johnston H, Brown DM, Stone V (2014) Toxicological effect of engineered nanomaterials on the liver. Br J Pharmacol 171(17):3980–3987CrossRefGoogle Scholar
  160. 160.
    Matuszak J, Dörfler P, Lyer S, Unterweger H, Juenet M, Chauvierre C et al (2018) Comparative analysis of nanosystems’ effects on human endothelial and monocytic cell functions. Nanotoxicology 0(0):1–18Google Scholar
  161. 161.
    Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M et al (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297(1–3):1–9CrossRefGoogle Scholar
  162. 162.
    Burden N, Aschberger K, Chaudhry Q, Clift MJD, Fowler P, Johnston H et al (2017) Aligning nanotoxicology with the 3Rs: what is needed to realise the short, medium and long-term opportunities? Regul Toxicol Pharmacol 91:257–266CrossRefGoogle Scholar
  163. 163.
    Ahn J, Ko J, Lee S, Yu J, Kim YT, Jeon NL (2018) Microfluidics in nanoparticle drug delivery; from synthesis to pre-clinical screening. Adv Drug Deliv Rev 128:29–53CrossRefGoogle Scholar
  164. 164.
    Barar J, Omidi Y (2013) Intrinsic bio-signature of gene delivery nanocarriers may impair gene therapy goals. Bioimpacts 3(3):105–109Google Scholar
  165. 165.
    Fiszer-Kierzkowska A, Vydra N, Wysocka-Wycisk A, Kronekova Z, Jarzab M, Lisowska KM et al (2011) Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells. BMC Mol Biol 12:27.  https://doi.org/10.1186/1471-2199-12-27CrossRefGoogle Scholar
  166. 166.
    Frank EA, Carreira VS, Shanmukhappa K, Medvedovic M, Prows DR, Yadav JS (2017) Genetic susceptibility to toxicologic lung responses among inbred mouse strains following exposure to carbon nanotubes and profiling of underlying gene networks. Toxicol Appl Pharmacol 327:59–70CrossRefGoogle Scholar
  167. 167.
    Hatakeyama H, Ito E, Yamamoto M, Akita H, Hayashi Y, Kajimoto K et al (2011) A DNA microarray-based analysis of the host response to a nonviral gene carrier: a strategy for improving the immune response. Mol Ther 19(8):1487–1498CrossRefGoogle Scholar
  168. 168.
    Hirn S, Haberl N, Loza K, Epple M, Kreyling WG, Rothen-Rutishauser B et al (2014) Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices. Beilstein J Nanotechnol 5(1):2440–2449CrossRefGoogle Scholar
  169. 169.
    Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M (2018) Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 128:84–100CrossRefGoogle Scholar
  170. 170.
    Bahadori F, Kocyigit A, Onyuksel H, Dag A, Topcu G (2017) Cytotoxic, apoptotic and genotoxic effects of lipid-based and polymeric nano micelles, an in vitro evaluation. Toxics 6(1):7CrossRefGoogle Scholar
  171. 171.
    Guggenheim EJ, Milani S, Röttgermann PJF, Dusinska M, Saout C, Salvati A et al (2018) Refining in vitro models for nanomaterial exposure to cells and tissues. NanoImpact 10:121–142CrossRefGoogle Scholar
  172. 172.
    Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z et al (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621CrossRefGoogle Scholar
  173. 173.
    Wang A, Marinakos SM, Badireddy AR, Powers CM, Houck KA (2013) Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(5):430–448CrossRefGoogle Scholar
  174. 174.
    Coch C, Lück C, Schwickart A, Putschli B, Renn M, Höller T et al (2013) A human in vitro whole blood assay to predict the systemic cytokine response to therapeutic oligonucleotides including siRNA. PLoS One 8(8):e71057.  https://doi.org/10.1371/journal.pone.0071057CrossRefGoogle Scholar
  175. 175.
    Kermanizadeh A, Jantzen K, Brown DM, Møller P, Loft S (2018) A flow cytometry-based method for the screening of nanomaterial-induced reactive oxygen species production in leukocytes subpopulations in whole blood. Basic Clin Pharmacol Toxicol 122(1):149–156CrossRefGoogle Scholar
  176. 176.
    Sewing S, Boess F, Moisan A, Bertinetti-Lapatki C, Minz T, Hedtjaern M et al (2016) Establishment of a predictive in vitro assay for assessment of the hepatotoxic potential of oligonucleotide drugs. PLoS One 11(7):1–15CrossRefGoogle Scholar
  177. 177.
    Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S (2008) Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial A549 cells. Toxicol Mech Methods 18(4):369–378CrossRefGoogle Scholar
  178. 178.
    Wu X, Tan Y, Mao H, Zhang M (2010) Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine 5(1):385–399CrossRefGoogle Scholar
  179. 179.
    Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M (2014) Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine 9(16):2557–2585CrossRefGoogle Scholar
  180. 180.
    Huong TM, Ishida T, Harashima H, Kiwada H (2001) Species difference in correlation between in vivo/in vitro liposome-complement interactions. Biol Pharm Bull 24(4):439–441CrossRefGoogle Scholar
  181. 181.
    Cornu R, Rougier N, Pellequer Y, Lamprecht A, Hamon P, Li R et al (2018) Interspecies differences in the cytochrome P450 activity of hepatocytes exposed to PLGA and silica nanoparticles: An: in vitro and in vivo investigation. Nanoscale 10(11):5171–5181CrossRefGoogle Scholar
  182. 182.
    Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:1–15CrossRefGoogle Scholar
  183. 183.
    Xia T, Hamilton RF Jr, Bonner JC, Crandall ED, Elder A, Fazlollahi F et al (2013) Responses to engineered nanomaterials: the NIEHS Nano GO consortium. Environ Health Perspect 121(6):683–690CrossRefGoogle Scholar
  184. 184.
    Roller M (2011) In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. Mutat Res Rev Mutat Res 727(3):72–85CrossRefGoogle Scholar
  185. 185.
    Jain P, Pawar RS, Pandey RS, Madan J, Pawar S, Lakshmi PK et al (2017) In-vitro in-vivo correlation (IVIVC) in nanomedicine: is protein corona the missing link? Biotechnol Adv 35(7):889–904CrossRefGoogle Scholar
  186. 186.
    Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29CrossRefGoogle Scholar
  187. 187.
    Dawidczyk CM, Russell LM, Searson PC (2014) Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2:1–13CrossRefGoogle Scholar
  188. 188.
    Park J, Park J, Pei Y, Xu J, Yeo Y (2016) Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 104:93–109CrossRefGoogle Scholar
  189. 189.
    Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141CrossRefGoogle Scholar
  190. 190.
    Eliasof S, Lazarus D, Peters CG, Case RI, Cole RO, Hwang J et al (2013) Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci 110(37):15127–15132CrossRefGoogle Scholar
  191. 191.
    Campbell JD, Cho Y, Foster ML, Kanzler H, Kachura MA, Lum JA et al (2009) CpG-containing immunostimulatory DNA sequences elicit TNFalpha-dependent toxicity in rodents but not in humans. J Clin Invest 119(9):2564–2576CrossRefGoogle Scholar
  192. 192.
    Hochrein H, Wagner H (2004) Of men, mice and pigs: looking at their plasmacytoid dendritic cells. Immunology 112(1):26–27CrossRefGoogle Scholar
  193. 193.
    Clarke S, Laxton C, Horscroft N, Richard V, Thomas A, Parkinson T (2009) Comparison of rat and human responses to toll-like receptor 7 activation. J Interf Cytokine Res 29(2):113–126CrossRefGoogle Scholar
  194. 194.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Akira S, Lipford G et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529CrossRefGoogle Scholar
  195. 195.
    Roberts TL, Sweet MJ, Hume DA, Stacey KJ (2005) Cutting edge: species specific TLR-9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol 174(2):605–8CrossRefGoogle Scholar
  196. 196.
    Schattenberg D, Schott M, Reindl G, Krueger T, Tschoepe D, Feldkamp J et al (2000) Response of human monocyte-derived dendritic cells to immunostimulatory DNA. Eur J Immunol 30(10):2824–2831CrossRefGoogle Scholar
  197. 197.
    Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:1–15CrossRefGoogle Scholar
  198. 198.
    Hackstein H, Wachtendorf A, Kranz S, Lohmeyer J, Bein G, Baal N (2012) Heterogeneity of respiratory dendritic cell subsets and lymphocyte populations in inbred mouse strains. Respir Res 13:1–13CrossRefGoogle Scholar
  199. 199.
    Jones DR, Baldrick P (2013) Association of Inhalation Toxicologists’ (AIT) review of regulatory aspects for inhalation toxicology studies. Inhal Toxicol 25(2):84–90CrossRefGoogle Scholar
  200. 200.
    Liggitt D (2002) Overview delivery of deoxyribonucleic acid (DNA) to somatic cells: an overview of species and strain-related responses. Comp Med 52(6):501–512Google Scholar
  201. 201.
    Sellers RS, Clifford CB, Treuting PM, Brayton C (2012) Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet Pathol 49(1):32–43CrossRefGoogle Scholar
  202. 202.
    Sellers RS (2017) Translating mouse models: immune variation and efficacy testing. Toxicol Pathol 45(1):134–145CrossRefGoogle Scholar
  203. 203.
    Liu Y, Liggitt HD, Dow S, Handumrongkul C, Heath TD, Debs RJ (2002) Strain-based genetic differences regulate the efficiency of systemic gene delivery as well as expression. J Biol Chem 277(7):4966–4972CrossRefGoogle Scholar
  204. 204.
    Lin Z, Monteiro-Riviere NA, Kannan R, Riviere JE (2016) A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine 11(2):107–119CrossRefGoogle Scholar
  205. 205.
    Bahamonde J, Brenseke B, Chan MY, Kent RD, Vikesland PJ, Prater MR (2018) Gold nanoparticle toxicity in mice and rats: species differences. Toxicol Pathol 46(4):431–443CrossRefGoogle Scholar
  206. 206.
    Carter JM, Corson N, Driscoll KE, Elder A, Finkelstein JN, Harkema JN et al (2006) A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J Occup Environ Med 48(12):1265–1278CrossRefGoogle Scholar
  207. 207.
    Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347–357CrossRefGoogle Scholar
  208. 208.
    Dekkers S, Ma-Hock L, Lynch I, Russ M, Miller MR, Schins RPF et al (2018) Differences in the toxicity of cerium dioxide nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms. Inhal Toxicol 4:1–14Google Scholar
  209. 209.
    Hu YL, Qi W, Han F, Shao JZ, Gao JQ (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–3359Google Scholar
  210. 210.
    Ramachandran R, Krishnaraj C, Kumar VKA, Harper SL, Kalaichelvan TP, Yun SI (2018) In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. 3 Biotech 8(10):441.  https://doi.org/10.1007/s13205-018-1457-yCrossRefGoogle Scholar
  211. 211.
    Campbell F, Bos FL, Sieber S, Arias-Alpizar G, Koch BE, Huwyler J et al (2018) Directing nanoparticle biodistribution through evasion and exploitation of stab2-dependent nanoparticle uptake. ACS Nano 12(3):2138–2150CrossRefGoogle Scholar
  212. 212.
    Tang J, Baxter S, Menon A, Alaarg A, Sanchez-Gaytan BL, Fay F et al (2016) Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc Natl Acad Sci 113(44):E6731–E6740CrossRefGoogle Scholar
  213. 213.
    Chapman KL, Holzgrefe H, Black LE, Brown M, Chellman G, Copeman C et al (2013) Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 66(1):88–103CrossRefGoogle Scholar
  214. 214.
    Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510CrossRefGoogle Scholar
  215. 215.
    Hubbs AF, Sargent LM, Porter DW, Sager TM, Chen BT, Frazer G et al (2015) Nanotechnol: Toxicol Pathol 41(2):395–409Google Scholar
  216. 216.
    Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA (2018) Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules 23(8):1848.  https://doi.org/10.3390/molecules23081848CrossRefGoogle Scholar
  217. 217.
    Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607CrossRefGoogle Scholar
  218. 218.
    Janas MM, Harbison CE, Perry VK, Carito B, Sutherland JE, Vaishnaw AK et al (2018) The nonclinical safety profile of GalNAc-conjugated RNAi therapeutics in subacute studies. Toxicol Pathol 46(7):735–745CrossRefGoogle Scholar
  219. 219.
    Frazier KS (2015) Antisense oligonucleotide therapies:the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol 43(1):78–89CrossRefGoogle Scholar
  220. 220.
    Frazier KS, Sobry C, Derr V, Adams MJ, Den Besten C, de Kimpe S et al (2014) Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide. Toxicol Pathol 42(5):923–935CrossRefGoogle Scholar
  221. 221.
    Dow S, Elmslie R, Kurzman I, Macewen G, Pericle F, Liggitt D (2005) Phase I study of liposome–DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther 16(8):937–946CrossRefGoogle Scholar
  222. 222.
    Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N et al (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28(12):1300–1303CrossRefGoogle Scholar
  223. 223.
    Meng H, Leong W, Leong KW, Chen C, Zhao Y (2018) Walking the line: the fate of nanomaterials at biological barriers. Biomaterials 174:41–53CrossRefGoogle Scholar
  224. 224.
    Caracciolo G, Farokhzad OC, Mahmoudi M (2017) Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol 35(3):257–264CrossRefGoogle Scholar
  225. 225.
    Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8(3):343–357CrossRefGoogle Scholar
  226. 226.
    Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M et al (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77(3):407–416CrossRefGoogle Scholar
  227. 227.
    Morais T, Soares ME, Duarte JA, Soares L, Maia S, Gomes P et al (2012) Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Eur J Pharm Biopharm 80(1):185–193CrossRefGoogle Scholar
  228. 228.
    Perry JL, Reuter KG, Luft JC, Pecot CV, Zamboni W, DeSimone JM (2017) Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett 17(5):2879–2886CrossRefGoogle Scholar
  229. 229.
    Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726CrossRefGoogle Scholar
  230. 230.
    Arms L, Smith DW, Flynn J, Palmer W, Martin A, Woldu A et al (2018) Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front Pharmacol 9:1–17CrossRefGoogle Scholar
  231. 231.
    Holzhausen C, Gröger D, Mundhenk L, Welker P, Haag R, Gruber AD (2013) Tissue and cellular localization of nanoparticles using 35S labeling and light microscopic autoradiography. Nanomed Nanotechnol Biol Med 9(4):465–468CrossRefGoogle Scholar
  232. 232.
    Pei YI, Hancock PJ, Zhang H, Bartz R, Cherrin C, Innocent N et al (2010) Quantitative evaluation of siRNA delivery in vivo. RNA 16:2553–2563CrossRefGoogle Scholar
  233. 233.
    Balogh L, Nigavekar SS, Nair BM, Lesniak W, Zhang C, Sung LY et al (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomed Nanotechnol Biol Med 3(4):281–296CrossRefGoogle Scholar
  234. 234.
    Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed Nanotechnol Biol Med 14(1):1–12CrossRefGoogle Scholar
  235. 235.
    Black KCL, Ibricevic A, Gunsten SP, Flores JA, Gustafson TP, Raymond JE et al (2016) In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ĉerenkov imaging. Biomaterials 98:53–63CrossRefGoogle Scholar
  236. 236.
    Johnston HJ, Mouras R, Brown DM, Elfick A, Stone V (2015) Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy. Nanotechnology 26(50):505102CrossRefGoogle Scholar
  237. 237.
    Shi B, Abrams M (2013) Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery. J Histochem Cytochem 61(6):407–420CrossRefGoogle Scholar
  238. 238.
    Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, Mundhenk L, Graf C et al (2015) Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol 6(1):263–280CrossRefGoogle Scholar
  239. 239.
    Chiarelli PA, Revia RA, Stephen ZR, Wang K, Jeon M, Nelson V et al (2017) Nanoparticle biokinetics in mice and nonhuman primates. ACS Nano 11(9):9514–9524CrossRefGoogle Scholar
  240. 240.
    Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26CrossRefGoogle Scholar
  241. 241.
    Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71.  https://doi.org/10.1186/s12951-018-0392-8CrossRefGoogle Scholar
  242. 242.
    Korsmeyer R (2016) Critical questions in development of targeted nanoparticle therapeutics. Regen Biomater 3(2):143–147CrossRefGoogle Scholar
  243. 243.
    Coty JB, Vauthier C (2018) Characterization of nanomedicines: a reflection on a field under construction needed for clinical translation success. J Control Release 275:254–268CrossRefGoogle Scholar
  244. 244.
    Begley CG, Ioannidis JPA (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116(1):116–126CrossRefGoogle Scholar
  245. 245.
    Garner JP, Gaskill BN, Weber EM, Ahloy-Dallaire J, Pritchett-Corning KR (2017) Introducing therioepistemology: the study of how knowledge is gained from animal research. Lab Anim (NY) 46(4):103–113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Comparative Medicine, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations