Biotransformation and Potential Adverse Effects of Rare Earth Oxide Nanoparticles

  • Ruth Hwang
  • Chong Hyun Chang
  • Yifang ZhuEmail author
  • Tian XiaEmail author


Rare earth elements, also known as lanthanides, consist of 17 rare earth elements including cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), promethium (Pm), samarium (Sm), scandium (Sc), terbium (Tb), thulium (Tm), ytterbium (Yb), and yttrium (Y). They are useful at the nanoscale in a variety of industrial applications due to their magnetic, optical, and electronic properties. Furthermore, rare earth elements can be doped onto a host lattice to combine and harness their luminescence properties to enhance efficiency, which is called upconversion used in bioimaging. This chapter explores the biotransformation, translocation, and potential adverse effects of rare earth nanomaterials in plants and animals. Biotransformation occurs via a biochemical modification by living organisms or the ambient environmental media that can modify the toxicity and influence the fate of the material in the organism.



This work was supported by the National Heart, Lung, and Blood Institute, under Award No. R01 HL139379, and National Institute of Environmental Health Sciences at the National Institutes of Health, under Award Nos. U01 ES027237 and R01 ES022698. Leveraged support for characterization equipment used in this study was provided by the National Science Foundation and the Environmental Protection Agency under Award No. DBI-1266377. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, NSF, or EPA.


  1. 1.
    Lu P-J, Huang S-C, Chen Y-P, Chiueh L-C, Shih DY-C (2015) Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal 23(3):587–594CrossRefGoogle Scholar
  2. 2.
    Sugimoto S (2011) Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 44(6):064001CrossRefGoogle Scholar
  3. 3.
    Ma YH, Zhang P, Zhang ZY, He X, Zhang JZ, Ding YY, Zhang J, Zheng LR, Guo Z, Zhang LJ, Chai ZF, Zhao YL (2015) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674CrossRefGoogle Scholar
  4. 4.
    Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5(11):8488–8505CrossRefGoogle Scholar
  5. 5.
    Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Mater 6:e90CrossRefGoogle Scholar
  6. 6.
    Gai S, Li C, Yang P, Lin J (2014) Recent Progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389CrossRefGoogle Scholar
  7. 7.
    Thomsen HS, Morcos SK, Almén T, Bellin M-F, Bertolotto M, Bongartz G, Clement O, Leander P, Heinz-Peer G, Reimer P, Stacul F, van der Molen A, Webb JAW (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol 23(2):307–318CrossRefGoogle Scholar
  8. 8.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362CrossRefGoogle Scholar
  9. 9.
    Vocaturo G, Colombo F, Zanoni M, Rodi F, Sabbioni E, Pietra R (1983) Human exposure to heavy metals: rare earth pneumoconiosis in occupational workers. Chest 83(5):780–783CrossRefGoogle Scholar
  10. 10.
    Li X, Zhang F, Zhao D (2015) Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev 44(6):1346–1378CrossRefGoogle Scholar
  11. 11.
    Li R, Ji Z, Dong J, Chang CH, Wang X, Sun B, Wang M, Liao Y-P, Zink JI, Nel AE, Xia T (2015) Enhancing the imaging and biosafety of Upconversion nanoparticles through phosphonate coating. ACS Nano 9(3):3293–3306CrossRefGoogle Scholar
  12. 12.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640CrossRefGoogle Scholar
  13. 13.
    Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S-T, Liu Z (2011) Facile preparation of multifunctional Upconversion Nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50(32):7385–7390CrossRefGoogle Scholar
  14. 14.
    Pang X, Li D, Peng A (2002) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res 9(2):143CrossRefGoogle Scholar
  15. 15.
    Zhang P, Ma YH, Zhang ZY, He X, Zhang J, Guo Z, Tai RZ, Zhao YL, Chai ZF (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6(11):9943–9950CrossRefGoogle Scholar
  16. 16.
    Yang X, Pan H, Wang P, Zhao F-J (2017) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300CrossRefGoogle Scholar
  17. 17.
    Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4(10):1105–1112CrossRefGoogle Scholar
  18. 18.
    Ma YH, He X, Zhang P, Zhang ZY, Guo Z, Tai RZ, Xu ZJ, Zhang LJ, Ding YY, Zhao YL, Chai ZF (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5(4):743–753CrossRefGoogle Scholar
  19. 19.
    Garzón-Manjón A, Aranda-Ramos A, Melara-Benítez B, Bensarghin I, Ros J, Ricart S, Nogués C (2018) Simple synthesis of biocompatible stable CeO2 nanoparticles as antioxidant agents. Bioconjug Chem 29(7):2325–2331CrossRefGoogle Scholar
  20. 20.
    Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116(10):5987–6041CrossRefGoogle Scholar
  21. 21.
    Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279CrossRefGoogle Scholar
  22. 22.
    Erdakos GB, Bhave PV, Pouliot GA, Simon H, Mathur R (2014) Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality. Environ Sci Technol 48(21):12775–12782CrossRefGoogle Scholar
  23. 23.
    Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, Schwegler-Berry D, Castranova V, Ma JK (2011) Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology 5(3):312–325CrossRefGoogle Scholar
  24. 24.
    Joo SH, Zhao D (2017) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J Hazard Mater 322:29–47CrossRefGoogle Scholar
  25. 25.
    Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 4(1):12–26CrossRefGoogle Scholar
  26. 26.
    Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15CrossRefGoogle Scholar
  27. 27.
    Li R, Ji Z, Chang CH, Dunphy DR, Cai X, Meng H, Zhang H, Sun B, Wang X, Dong J, Lin S, Wang M, Liao Y-P, Brinker CJ, Nel A, Xia T (2014) Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle Hazard and provide opportunities for safer design. ACS Nano 8(2):1771–1783CrossRefGoogle Scholar
  28. 28.
    Sisler JD, Li R, McKinney W, Mercer RR, Ji Z, Xia T, Wang X, Shaffer J, Orandle M, Mihalchik AL, Battelli L, Chen BT, Wolfarth M, Andrew ME, Schwegler-Berry D, Porter DW, Castranova V, Nel A, Qian Y (2016) Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Part Fibre Toxicol 13(1):42CrossRefGoogle Scholar
  29. 29.
    Kumari M, Kumari SI, Kamal SSK, Grover P (2014) Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure. Mutat Res/Genet Toxicol Environ Mutagen 775–776:7–19CrossRefGoogle Scholar
  30. 30.
    López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693CrossRefGoogle Scholar
  31. 31.
    Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230CrossRefGoogle Scholar
  32. 32.
    Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7(3):466–477CrossRefGoogle Scholar
  33. 33.
    Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138CrossRefGoogle Scholar
  34. 34.
    Mirshafiee V, Sun B, Chang CH, Liao Y-P, Jiang W, Jiang J, Liu X, Wang X, Xia T, Nel AE (2018) Toxicological profiling of metal oxide nanoparticles in liver context reveals Pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano 12(4):3836–3852CrossRefGoogle Scholar
  35. 35.
    Schubert D, Dargusch R, Raitano J, Chan S-W (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91CrossRefGoogle Scholar
  36. 36.
    Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822CrossRefGoogle Scholar
  37. 37.
    Lin S, Wang X, Ji Z, Chang CH, Dong Y, Meng H, Liao Y-P, Wang M, Song T-B, Kohan S, Xia T, Zink JI, Lin S, Nel AE (2014) Aspect ratio plays a role in the Hazard potential of CeO2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano 8(5):4450–4464CrossRefGoogle Scholar
  38. 38.
    Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, George S, Xia T, Nel AE, Zink JI (2012) Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6(6):5366–5380CrossRefGoogle Scholar
  39. 39.
    Bernard S, Benzerara K, Beyssac O, Brown GE, Stamm LG, Duringer P (2009) Ultrastructural and chemical study of modern and fossil sporoderms by scanning transmission X-ray microscopy (STXM). Rev Palaeobot Palynol 156(1):248–261CrossRefGoogle Scholar
  40. 40.
    Wan J, Tyliszczak T, Tokunaga TK (2007) Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: applications of STXM and NEXAFS spectroscopy. Geochim Cosmochim Acta 71(22):5439–5449CrossRefGoogle Scholar
  41. 41.
    Thomas R (2013) Practical guide to ICP-MS a tutorial for beginners, 3rd edn. CRC Press, Boca Raton, p 446CrossRefGoogle Scholar
  42. 42.
    Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115(25):6506–6511CrossRefGoogle Scholar
  43. 43.
    Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239CrossRefGoogle Scholar
  44. 44.
    Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423CrossRefGoogle Scholar
  45. 45.
    Mommer L, Kirkegaard J, van Ruijven J (2016) Root–root interactions: towards a rhizosphere framework. Trends Plant Sci 21(3):209–217CrossRefGoogle Scholar
  46. 46.
    U.S. Environmental Protection Agency. (US EPA) (1996) Ecological effects test guidelines. OPPTS 850.4150 Terrestrial Plant Toxicity, Tier I (vegetative Vigor). EPA 712-C-96-163. Public Draft. Office of Prevention, Pesticides and Toxic Substances, Washington, DCGoogle Scholar
  47. 47.
    Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32(28):6745–6753CrossRefGoogle Scholar
  48. 48.
    Ma Y, Zhang P, Zhang Z, He X, Li Y, Zhang J, Zheng L, Chu S, Yang K, Zhao Y, Chai Z (2015) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9(2):262–270CrossRefGoogle Scholar
  49. 49.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the Nanolevel. Science 311(5761):622CrossRefGoogle Scholar
  50. 50.
    Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621CrossRefGoogle Scholar
  51. 51.
    Wang B, He X, Zhang Z, Zhao Y, Feng W (2013) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769CrossRefGoogle Scholar
  52. 52.
    Yin W, Zhou L, Ma Y, Tian G, Zhao J, Yan L, Zheng X, Zhang P, Yu J, Gu Z, Zhao Y (2015) Phytotoxicity, translocation, and biotransformation of NaYF4 Upconversion nanoparticles in a soybean plant. Small 11(36):4774–4784CrossRefGoogle Scholar
  53. 53.
    Guller AE, Nadort A, Generalova AN, Khaydukov EV, Nechaev AV, Kornienko IA, Petersen EV, Liang L, Shekhter AB, Qian Y, Goldys EM, Zvyagin AV (2018) Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications: better safe than brighter? ACS Biomater Sci Eng 4(9):3143–3153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fielding School of Public Health, Department of Environmental Health Science, Center for Health SciencesUniversity of California Los AngelesLos AngelesUSA
  2. 2.Center for Environmental Implications of Nanotechnology, California NanoSystems InstituteUniversity of California Los AngelesLos AngelesUSA
  3. 3.Division of NanoMedicine, Department of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations