Caenorhabditis elegans Nematode: A Versatile Model to Evaluate the Toxicity of Nanomaterials In Vivo

  • Svetlana Batasheva
  • Gölnur Fakhrullina
  • Farida Akhatova
  • Rawil FakhrullinEmail author


Using in vivo models in assessing the toxicity of nanomaterials is a promising way to investigate the toxicity of nanomaterials on live organisms. Free-living nematodes Caenorhabditis elegans have been extensively used in toxicity assays because of their fully sequenced genome (closely homologous to human genome), short life span (ca. 3 weeks), and tiny transparent ~1-mm-long body built up from a fixed number of cells. In this chapter we overview our recent studies on nanotoxicity employing C. elegans nematodes. We have pioneered surface modification of C. elegans with polyelectrolyte multilayer shells (pure or doped with 20 nm Au nanoparticles) and the direct magnetic functionalization of nematodes with iron oxide nanoparticles. Magnetically functionalized nematodes were effectively separated and spatially moved using magnetic field. The cuticle-modified nematodes preserve their viability and reproduction. Next, we introduced a nanomaterial delivery method into C. elegans intestines based on using nanoparticle-coated bacteria as “nanobaits” ingested by nematodes as a sole food source. Nematodes feed on the nanoparticle-coated bacteria (Escherichia coli) and microalgae (Chlorella pyrenoidosa), resulting in ingestion of nanoparticles, which were detected exclusively inside the intestine. Using iron oxide nanoparticles to produce nanobaits, we were able to magnetically label live nematodes, rendering them magnetically responsive. Using this method, we analyzed the nanosafety of halloysite, a clay tubular nanomaterial having 50 nm diameter and 1.5 μm length. Halloysite nanotubes were found to be safe for C. elegans at relatively high concentrations (1 mg/mL) which is of about 1000× higher than any likely soil contamination concentration. We have used dark-field microscopy and physiological tests to confirm that halloysite is localized in the alimentary system only, without inducing severe toxic effects. We also introduced PeakForce Tapping non-resonance atomic force microscopy (AFM) to image and produce nanomechanical maps of C. elegans and Turbatrix aceti worms. The animals were imaged at nanoscale in gas and liquid environment. We have obtained high-resolution AFM images and nanomechanical maps of various cuticle features demonstrating the differences in topography and structure between animals of different age and different species. Nanomechanical mapping of surface deformation, modulus, and non-specific adhesion has confirmed the nonuniform mechanical properties of the nematode cuticle. Consequently, we suggest that AFM in PeakForce Tapping mode can be effective to investigate the surface coatings of relatively large live immobilized multicellular organisms.



This study was performed in the framework of the Russian Government Program of the Competitive Development of Kazan Federal University. The work was partially funded by RFBR grant 18-53-80067-BRICS_t and by the subsidy allocated to Kazan Federal University for the state assignment in scientific activities (#16.2822.2017/4.6). The authors gratefully acknowledge the facilities of Interdisciplinary Centre for Analytical Microscopy (Kazan Federal University).


  1. 1.
    Cohen-Karni T, Langer R, Kohane DS (2012) The smartest materials: the future of nanoelectronics in medicine. ACS Nano 6:6541–6545CrossRefGoogle Scholar
  2. 2.
    Yan L, Zhao F, Li S, Hu Z, Zhao Y (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3:362–382CrossRefGoogle Scholar
  3. 3.
    Roth GA, Tahiliani S, Neu-Baker NM, Brenner S (2015) Hyperspectral microscopy as an analytical tool for nanomaterials. WIREs Nanomed Nanobiotechnol 7:565–579CrossRefGoogle Scholar
  4. 4.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94Google Scholar
  5. 5.
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapink A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237CrossRefGoogle Scholar
  6. 6.
    Sterken MG, Snoek LB, Kammenga JE, Andersen EC (2015) The laboratory domestication of Caenorhabditis elegans. Trends Genet 31(5):224–231CrossRefGoogle Scholar
  7. 7.
    Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877CrossRefGoogle Scholar
  8. 8.
    Dhawan R, Dusenbery DB, Williams PL (2000) A comparison of metal-induced lethality and behavioral responses in the nematode Caenorhabditis elegans. Environ Toxicol Chem 19:3061–3067CrossRefGoogle Scholar
  9. 9.
    Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano 2:54–59CrossRefGoogle Scholar
  10. 10.
    Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399CrossRefGoogle Scholar
  11. 11.
    Kim SW, Nam SH, An YJ (2012) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Saf 77:64–70CrossRefGoogle Scholar
  12. 12.
    Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28CrossRefGoogle Scholar
  13. 13.
    Wu Q, Yin L, Li X, Tang M, Zhang T, Wang D (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Wu Q, Li Y, Wang D (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757CrossRefGoogle Scholar
  15. 15.
    Gao Y, Liu N, Chen C, Luo Y, Li Y, Zhang Z, Zhao Y, Zhao B, Iida A, Chai Z (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom 23:1121–1124CrossRefGoogle Scholar
  16. 16.
    Kim SW, Kwak JI, An Y-J (2013) Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ Sci Technol 47:5393–5399CrossRefGoogle Scholar
  17. 17.
    Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177CrossRefGoogle Scholar
  18. 18.
    Nouara A, Wu Q, Li Y, Tang M, Wang H, Zhao Y, Wang D (2013) Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmentally relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5(13):6088–6096CrossRefGoogle Scholar
  19. 19.
    Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4:e6622CrossRefGoogle Scholar
  20. 20.
    Zanni E, De Bellis G, Bracciale MP, Broggi A, Santarelli ML, Sarto MS, Palleschi C, Uccelletti D (2012) Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett 12:2740–2744CrossRefGoogle Scholar
  21. 21.
    Zhang W, Sun B, Zhang L, Zhao B, Nie G, Zhao Y (2011) Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale 3:2636–2641Google Scholar
  22. 22.
    Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott TC (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474(7349):79–82CrossRefGoogle Scholar
  23. 23.
    Brooker S (2010) Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers – a review. Int J Parasitol 40:1137–1144CrossRefGoogle Scholar
  24. 24.
    L’Ollivier C, Piarroux R (2013) Diagnosis of human nematode infections. Expert Rev Anti-Infect Ther 11(12):1363–1376CrossRefGoogle Scholar
  25. 25.
    Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961CrossRefGoogle Scholar
  26. 26.
    Avery L, You Y-J (2012) WormBook: the online review of C. elegans biology. 1Google Scholar
  27. 27.
    Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond Ser B Biol Sci 366:9–16CrossRefGoogle Scholar
  28. 28.
    Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512CrossRefGoogle Scholar
  29. 29.
    Stroustrup N, Anthony WE, Nash ZM, Gowda V, Gomez A, López-Moyado IF, Apfeld J, Fontana W (2016) The temporal scaling of Caenorhabditis elegans ageing. Nature 530(7588):103–107CrossRefGoogle Scholar
  30. 30.
    Beron C, Vidal-Gadea AG, Cohn J, Parikh A, Hwang G, Pierce-Shimomura JT (2015) The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders. Genes Brain Behav 14(4):357–368CrossRefGoogle Scholar
  31. 31.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811CrossRefGoogle Scholar
  32. 32.
    Swierczek NA, Giles AC, Rankin CH, Kerr RA (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8(7):592–598CrossRefGoogle Scholar
  33. 33.
    O’Reilly L, Luke CJ, Perlmut DH, Pak S (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69-70:247–253CrossRefGoogle Scholar
  34. 34.
    Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13(8):347–350CrossRefGoogle Scholar
  35. 35.
    Tejeda-Benitez L, Olivero-Verbel J (2016) Caenorhabditis elegans, a biological model for research in toxicology. Rev Environ Contam Toxicol 237:1–35Google Scholar
  36. 36.
    Yanik MF, Rohde CB, Pardo-Martin C (2011) Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates. Annu Rev Biomed Eng 13:185–217CrossRefGoogle Scholar
  37. 37.
    Fakhrullin RF, Shlykova LV, Zamaleeva AI, Nurgaliev DK, Osin YN, García-Alonso J, Paunov VN (2010) Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromol Biosci 10:1257–1264CrossRefGoogle Scholar
  38. 38.
    Lee P, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRefGoogle Scholar
  39. 39.
    Konnova SA, Danilushkina AA, Fakhrullina GI, Akhatova FS, Badrutdinov AR, Fakhrullin RF (2015) Silver nanoparticle-coated “cyborg” microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv 5:13530–13537CrossRefGoogle Scholar
  40. 40.
    Däwlätşina GI, Minullina RT, Fakhrullin RF (2013) Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans. Nanoscale 5(23):11761–11769Google Scholar
  41. 41.
    Fakhrullina G, Akhatova F, Kibardina M, Fokin D, Fakhrullin R (2017) Nanoscale imaging and characterization of Caenorhabditis elegans epicuticle using atomic force microscopy. Nanomedicine: NBM 13(2):483–491Google Scholar
  42. 42.
    Shapira M, Tan MW (2008) Genetic analysis of Caenorhabditis elegans innate immunity. In: Ewbank J, Vivier E (eds) Innate immunity. Methods in molecular biology, vol 415. Humana Press, Totowa, pp 429–442CrossRefGoogle Scholar
  43. 43.
    Akhatova F, Fakhrullina G, Khakimova E, Fakhrullin R (2018) Atomic force microscopy for imaging and nanomechanical characterisation of live nematode epicuticle: a comparative Caenorhabditis elegans and Turbatrix aceti study. Ultramicroscopy 194:40–47CrossRefGoogle Scholar
  44. 44.
    Fakhrullin RF, Zamaleeva AI, Minullina RT, Konnova SA, Paunov VN (2012) Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem Soc Rev 41:4189–4206CrossRefGoogle Scholar
  45. 45.
    Diaspro A, Silvano D, Krol S, Cavalleri O, Gliozzi A (2002) Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir 18:5047–5050CrossRefGoogle Scholar
  46. 46.
    Fakhrullin RF, Zamaleeva AI, Morozov MV, Tazetdinova DI, Alimova FK, Hilmutdinov AK, Zhdanov RI, Kahraman M, Culha M (2009) Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles. Langmuir 25(8):4628–4634CrossRefGoogle Scholar
  47. 47.
    Minullina RT, Osin YN, Ishmuchametova DG, Fakhrullin RF (2011) Interfacing multicellular organisms with polyelectrolyte shells and nanoparticles: a Caenorhabditis elegans study. Langmuir 27:7708–7713CrossRefGoogle Scholar
  48. 48.
    Peixoto CA, De Souza W (1994) Freeze-fracture characterization of the cuticle of adult and dauer forms of Caenorhabditis elegans. Parasitol Res 80:53–57CrossRefGoogle Scholar
  49. 49.
    Page KE, White KN, McCrohan CR, Killilea DW, Lithgow GJ (2012) Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans. Metallomics 4:512–522CrossRefGoogle Scholar
  50. 50.
    Casals E, Gonzalez E, Puntes V (2012) J Phys D Appl Phys 45:443001CrossRefGoogle Scholar
  51. 51.
    Fakhrullin RF, Lvov YM (2012) “Face-lifting” and “make-up” for microorganisms: layer-by-layer polyelectrolyte nanocoating. ACS Nano 6:4557–4564CrossRefGoogle Scholar
  52. 52.
    García-Alonso J, Fakhrullin RF, Paunov VN (2010) Rapid and direct magnetization of GFP-reporter yeast for micro-screening systems. Biosens Bioelectron 25:1816–1819CrossRefGoogle Scholar
  53. 53.
    Kahraman M, Zamaleeva AI, Fakhrullin RF, Culha M (2009) Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal Bioanal Chem 395:2559–2567CrossRefGoogle Scholar
  54. 54.
    Li M, Huang WE, Gibson CM, Fowler PW, Jousset A (2013) Stable isotope probing and raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway. Anal Chem 85:1642–1649CrossRefGoogle Scholar
  55. 55.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2201–2205CrossRefGoogle Scholar
  56. 56.
    Dzamukova MR, Zamaleeva AI, Ishmuchametova DG, Osin YN, Kiyasov AP, Nurgaliev DK, Ilinskaya ON, Fakhrullin RF (2011) A direct technique for magnetic functionalization of living human cells. Langmuir 27:14386–14393CrossRefGoogle Scholar
  57. 57.
    Dzamukova MR, Naumenko EA, Lannik NI, Fakhrullin RF (2013) Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomater Sci 1:810–813CrossRefGoogle Scholar
  58. 58.
    Hsu PC, O'Callaghan M, Al-Salim N, Hurst MR (2012) Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ Toxicol Chem 31:2366–2374CrossRefGoogle Scholar
  59. 59.
    Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699CrossRefGoogle Scholar
  60. 60.
    Page AP, Johnstone IL (2007) The cuticle. In: WormBook: the online review of C. elegans biology [Internet].
  61. 61.
    Essmann CL, Elmi M, Shaw M, Anand GM, Pawar VM, Srinivasan MA (2017) In-vivo high resolution AFM topographic imaging of Caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants, nanomedicine: nanotechnology. Biol Med 13(1):183–189Google Scholar
  62. 62.
    Cox GN, Kusch M, Edgar RS (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 90(1):7–17CrossRefGoogle Scholar
  63. 63.
    Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12:20140970CrossRefGoogle Scholar
  64. 64.
    Kumar S, Cartron ML, Mullin N, Qian P, Leggett GJ, Hunter CN, Hobbs JK (2017) Direct imaging of protein organization in an intact bacterial organelle using high-resolution atomic force microscopy. ACS Nano 11(1):126–133CrossRefGoogle Scholar
  65. 65.
    Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H (2013) Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7:1817–1822CrossRefGoogle Scholar
  66. 66.
    Jung S, Park J, Yoo J, Shin I, Kim Y, Ha K (2009) Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy. Ultramicroscopy 109:1428–1434CrossRefGoogle Scholar
  67. 67.
    Zorila FL, Ionescu C, Craciun LS, Zorila B (2017) Atomic force microscopy study of morphological modifications induced by different decontamination treatments on Escherichia coli. Ultramicroscopy 182:226–232CrossRefGoogle Scholar
  68. 68.
    Kuo FJ, Ho MS, Daib J, Fana MH (2015) Atomic force microscopy for dynamic observation of human erythrocytes in a microfluidic system. RSC Adv 5:101319–101326CrossRefGoogle Scholar
  69. 69.
    Mao Y, Sun Q, Wang X, Ouyang Q, Han L, Jiang L, Han D (2009) In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl Phys Lett 95:013704CrossRefGoogle Scholar
  70. 70.
    Ciasca G, Sassun TE, Minelli E, Antonelli M, Papi M, Santoro A, Giangaspero F, Delfini R, De Spiritoa M (2016) Nano-mechanical signature of brain tumours. Nanoscale 8:19629–19643CrossRefGoogle Scholar
  71. 71.
    Poletti G, Orsini F, Batani D, Zullini A (2004) Soft X-ray contact microscopy of nematode Caenorhabditis elegans. Eur Phys J D 30:235–241CrossRefGoogle Scholar
  72. 72.
    Allen MJ, Kanteti R, Riehm JJ, El-Hashani E, Salgia R (2015) Whole-animal mounts of Caenorhabditis elegans for 3D imaging using atomic force microscopy. Nanomedicine 11(8):1971–1974CrossRefGoogle Scholar
  73. 73.
    Fakhrullin RF, Paunov VN (2009) Fabrication of living cellosomes of rod-like and rhombohedral morphologies based on magnetically responsive templates. Chem Commun 18:2511–2513CrossRefGoogle Scholar
  74. 74.
    Rabets Y, Backholm M, Dalnoki-Veress K, Ryu WS (2014) Direct measurements of drag forces in C. elegans crawling locomotion. Biophys J 107:1980–1987CrossRefGoogle Scholar
  75. 75.
    Wallace HR (1968) The dynamics of nematode movement. Annu Rev Phytopathol 6:91–114CrossRefGoogle Scholar
  76. 76.
    Cohen N, Sanders T (2014) Nematode locomotion: dissecting the neuronal–environmental loop. Curr Opin Neurobiol 25:99–106CrossRefGoogle Scholar
  77. 77.
    Backholm M, Kasper AKS, Schulman RD, Ryu WS, Dalnoki-Veress K (2015) The effects of viscosity on the undulatory swimming dynamics of C. elegans. Phys Fluids 27:091901CrossRefGoogle Scholar
  78. 78.
    Backholm M, Ryu WS, Dalnoki-Veress K (2015) The nematode C. elegans as a complex viscoelastic fluid. Eur Phys J E 38(36):1–5Google Scholar
  79. 79.
    Yuan J, Raizen DM, Bau HH (2015) A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis). J R Soc Interface 12:20150227CrossRefGoogle Scholar
  80. 80.
    Shen XN, Sznitman J, Krajacic P, Lamitina T, Arratia PE (2012) Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys J 102:2772–2781CrossRefGoogle Scholar
  81. 81.
    Backholm M, Ryu WS, Dalnoki-Veress K (2013) Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm. PNAS 110(12):4528–4533CrossRefGoogle Scholar
  82. 82.
    Gilpin W, Uppaluri S, Brangwynne CP (2015) Worms under pressure: bulk mechanical properties of C. elegans are independent of the cuticle. Biophys J 108(8):1887–1898CrossRefGoogle Scholar
  83. 83.
    Park SJ, Goodman MB, Pruitt BL (2007) Analysis of nematode mechanics by piezoresistive displacement clamp. PNAS 104(44):17376–17381CrossRefGoogle Scholar
  84. 84.
    Uppaluri S, Brangwynne CP (2015) A size threshold governs Caenorhabditis elegans developmental progression. Proc R Soc B 282:20151283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Svetlana Batasheva
    • 1
  • Gölnur Fakhrullina
    • 1
  • Farida Akhatova
    • 1
  • Rawil Fakhrullin
    • 1
    Email author
  1. 1.Bionanotechnology LabInstitute of Fundamental Medicine and Biology, Kazan Federal UniversityKazanRussian Federation

Personalised recommendations