Skip to main content

Characterization Tools for Mechanical Probing of Biomimetic Materials

  • Chapter
  • First Online:
Book cover Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy

Abstract

The possibility to fully heal damaged or failing tissues and organs is one of the major challenges of modern medicine. Several approaches have been proposed, either using tissue engineered functional substitutes or inducing the body to self-repair, exploiting its innate regenerative potential. In any case, a crucial step for the success of therapy is provided by the design of a suitable scaffold, capable to sustain cellular growth and induce the differentiation towards the lineage of interest. A growing body of evidence suggests that the most affordable way to design an effective scaffold is to exploit a biomimetic approach, trying to emulate the characteristics of the natural environment. Moreover, it has been pointed out that not only the chemical nature of the material is relevant to this process but also its physical and, in particular, mechanical properties. Mapping the elasticity of a living tissue is becoming more and more relevant in the rational design of next generation biomimetic scaffolds, and the exploitation of advanced tools is required to achieve sub-μm resolution, comparable to the length scale probed by a single living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akilbekova D, Ogay V, Yakupov T, Sarsenova M, Umbayev B, Nurakhmetov A, Tazhin K, Yakovlev VV, Utegulov ZN (2018) Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones. J Biomed Opt 23(9):097004

    Article  Google Scholar 

  2. Antonacci G, Braakman S (2016) Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci Rep 6:37217. https://doi.org/10.1038/srep37217

    Article  CAS  Google Scholar 

  3. Antonacci G, Foreman MR, Paterson C, Török P (2013) Spectral broadening in Brillouin imaging. Appl Phys Lett 103(22):221105. https://doi.org/10.1063/1.4836477. http://adsabs.harvard.edu/abs/2013ApPhL.103v1105A

    Article  CAS  Google Scholar 

  4. Antonacci G, Pedrigi RM, Kondiboyina A, Mehta VV, De Silva R, Paterson C, Krams R, Török P (2015) Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J R Soc Interface 12(112):20150843

    Article  CAS  Google Scholar 

  5. Antonacci G, De Panfilis S, Di Domenico G, DelRe E, Ruocco G (2016) Breaking the contrast limit in single-pass fabry-pérot spectrometers. Phys Rev Appl 6(5):054020. https://doi.org/10.1103/PhysRevApplied.6.054020. http://adsabs.harvard.edu/abs/2016PhRvP...6e4020A

    Article  Google Scholar 

  6. Barenghi R, Beke S, Romano I, Gavazzo P, Farkas B, Vassalli M, Brandi F, Scaglione S (2014) Elastin-coated biodegradable photopolymer scaffolds for tissue engineering applications. Biomed Res Int 2014:624645

    Article  CAS  Google Scholar 

  7. Bavi N, Nikolaev YA, Bavi O, Ridone P, Martinac AD, Nakayama Y, Cox CD, Martinac B (2017) Principles of mechanosensing at the membrane interface. In: Epand R., Ruysschaert JM. (eds) The Biophysics of Cell Membranes. Springer Series in Biophysics, vol 19. Singapore: Springer

    Google Scholar 

  8. Bechtle S, Ang S, Schneider G (2010) On the mechanical properties of hierarchically structured biological materials. Universitätsbibliothek der Technischen Universität Hamburg-Harburg, Hamburg. https://books.google.it/books?id=nW5QuwEACAAJ

    Book  Google Scholar 

  9. Benassi P, Caponi S, Eramo R, Fontana A, Giugni A, Nardone M, Sampoli M, Viliani G (2005) Sound attenuation in a unexplored frequency region: Brillouin ultraviolet light scattering measurements in v-si o2. Phys Rev B 71(17):172201. https://doi.org/10.1103/PhysRevB.71.172201. http://adsabs.harvard.edu/abs/2005PhRvB.71q2201B

    Article  CAS  Google Scholar 

  10. Berne BJ, Pecora R (1977) Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Courier Corporation, 54(10):A430 https://doi.org/10.1021/ed054pA430.1

    Article  Google Scholar 

  11. Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 48:5406–5415. https://doi.org/10.1002/anie.200805179

    Article  CAS  Google Scholar 

  12. Betzig E, Trautman J, Harris T, Weiner J, Kostelak R (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251(5000):1468–1470

    Article  CAS  Google Scholar 

  13. Bhushan B (ed) (2010) Scanning probe microscopy in nanoscience and nanotechnology, vol 2. Springer, Berlin/Heidelberg

    Google Scholar 

  14. Bhushan B, Fuchs H (eds) (2008) Applied scanning probe methods, vol XIII. Springer, Berlin/Heidelberg

    Google Scholar 

  15. Bilodeau GG (1992) Regular pyramid punch problem. J Appl Mech 59:519. https://doi.org/10.1115/1.2893754

    Article  Google Scholar 

  16. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57

    Article  Google Scholar 

  17. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  Google Scholar 

  18. Boon J, Yip S (1991) Molecular hydrodynamics. Dover Publications, New York

    Google Scholar 

  19. Bottani CE, Fioretto D (2018) Brillouin scattering of phonons in complex materials. Adv Phys: X 3(1):1467281

    Google Scholar 

  20. Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12:2957–2965. https://doi.org/10.1021/bm2005388

    Article  CAS  Google Scholar 

  21. Brillouin L (1922) Diffusion of light and x-rays by a transparent homogeneous body. Ann Phys 17(2):88–122

    Article  CAS  Google Scholar 

  22. Caponi S, Fontana A, Montagna M, Pilla O, Rossi F, Terki F, Woignier T (2003) Acoustic attenuation in silica porous systems. J Non Cryst Solids 322:29–34. https://doi.org/10.1016/S0022-3093(03)00167-4. http://adsabs.harvard.edu/abs/2003JNCS..322...29C

    Article  CAS  Google Scholar 

  23. Caponi S, Benassi P, Eramo R, Giugni A, Nardone M, Fontana A, Sampoli M, Terki F, Woignier T (2004a) Phonon attenuation in vitreous silica and silica porous systems. Philos Mag 84(13–16):1423–1431

    Article  CAS  Google Scholar 

  24. Caponi S, Carini G, D’angelo G, Fontana A, Pilla O, Rossi F, Terki F, Tripodo G, Woignier T (2004b) Acoustic and thermal properties of silica aerogels and xerogels. Phys Rev B 70(21):214204

    Article  CAS  Google Scholar 

  25. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci 34(1–3):1–3, 5–104

    CAS  Google Scholar 

  26. Carlotti G (2018) Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface Brillouin scattering: a review. Appl Sci 8(1):124

    Article  Google Scholar 

  27. Cavalleri O, Natale C, Stroppolo ME, Relini A, Cosulich E, Thea S, Novi M, Gliozzi A (2000) Azurin immobilisation on thiol covered au(111). Phys Chem Chem Phys 2:4630–4635

    Article  CAS  Google Scholar 

  28. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3d bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20(1):1. https://doi.org/10.1186/s40824-016-0057-3

    Article  CAS  Google Scholar 

  29. Chu B (1976) Laser spectroscopy. (Book reviews: dynamic light scattering. With applications to chemistry, biology, and physics). Science 194:1155–1156. https://doi.org/10.1126/science.194.4270.1155. http://adsabs.harvard.edu/abs/1976Sci...194.1155B

    Article  CAS  Google Scholar 

  30. Comez L, Masciovecchio C, Monaco G, Fioretto D (2012) Progress in liquid and glass physics by Brillouin scattering spectroscopy. Solid State Phys 63:1–77. Elsevier

    Article  Google Scholar 

  31. Cusack S, Miller A (1979) Determination of the elastic constants of collagen by Brillouin light scattering. J Mol Biol 135:39–51

    Article  CAS  Google Scholar 

  32. Dil J (1982) Brillouin scattering in condensed matter. Rep Prog Phys 45(3):285

    Article  Google Scholar 

  33. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810. https://doi.org/10.1016/s0006-3495(02)75620-8

    Article  CAS  Google Scholar 

  34. Edginton RS, Mattana S, Caponi S, Fioretto D, Green E, Winlove CP, Palombo F (2016) Preparation of extracellular matrix protein fibers for Brillouin spectroscopy. J Vis Exp. https://doi.org/10.3791/54648

  35. Edginton RS, Green EM, Winlove CP, Fioretto D, Palombo F (2018) Dual scale biomechanics of extracellular matrix proteins probed by Brillouin scattering and quasistatic tensile testing. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 10504, p 105040J. https://doi.org/10.1117/12.2290183. http://adsabs.harvard.edu/abs/2018SPIE10504E..0JE

  36. Elsayad K, Werner S, Gallemí M, Kong J, Guajardo ERS, Zhang L, Jaillais Y, Greb T, Belkhadir Y (2016) Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Sci Signal 9(435):rs5–rs5

    Article  CAS  Google Scholar 

  37. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  Google Scholar 

  38. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102. https://doi.org/10.1103/PhysRevLett.87.148102

    Article  CAS  Google Scholar 

  39. Ferrera D, Canale C, Marotta R, Mazzaro N, Gritti M, Mazzanti M, Capellari S, Cortelli P, Gasparini L (2014) Lamin b1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fibroblasts. FASEB J 28(9):3906–3918. https://doi.org/10.1096/fj.13-247635

    Article  CAS  Google Scholar 

  40. Fink M, Tanter M (2010) Multiwave imaging and super resolution. Phys Today 63(2):28–33. https://doi.org/10.1063/1.3326986

    Article  Google Scholar 

  41. Fiore A, Zhang J, Shao P, Yun SH, Scarcelli G (2016) High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl Phys Lett 108:203701. https://doi.org/10.1063/1.4948353

    Article  CAS  Google Scholar 

  42. Franz MO, Mallot HA (2000) Biomimetic robot navigation. Robot Auton Syst 30:133–153. https://doi.org/10.1016/s0921-8890(99)00069-x

    Article  Google Scholar 

  43. Fung Y (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  44. Gruber P (2008) The signs of life in architecture. Bioinspir Biomim 3:023001. https://doi.org/10.1088/1748-3182/3/2/023001

    Article  Google Scholar 

  45. Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K, Vo BN, Sampson DD, Kennedy BF, Spatz JP, Engler AJ, Choi YS (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A 114:5647–5652. https://doi.org/10.1073/pnas.1618239114

    Article  CAS  Google Scholar 

  46. Harley R, James D, Miller A, White JW (1977) Phonons and the elastic moduli of collagen and muscle. Nature 267:285–287

    Article  CAS  Google Scholar 

  47. Harley BA, Leung JH, Silva ECCM, Gibson LJ (2007) Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater 3:463–474. https://doi.org/10.1016/j.actbio.2006.12.009

    Article  CAS  Google Scholar 

  48. Hartmann U (1988) Magnetic force microscopy: some remarks from the micromagnetic point of view. J Appl Phys 64(3):1561–1564

    Article  Google Scholar 

  49. Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094. PMID: 28991456

    Article  CAS  Google Scholar 

  50. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873. https://doi.org/10.1063/1.1143970

    Article  CAS  Google Scholar 

  51. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601. https://doi.org/10.1098/rsif.2006.0124

    Article  CAS  Google Scholar 

  52. Kapsali V (2013) 7 – Biomimetic approaches to the design of smart textiles for protection. In: Chapman R (ed) Smart textiles for protection. Wood-head Publishing series in textiles. Woodhead Publishing, Cambridge, UK, pp 214–226. https://doi.org/10.1533/9780857097620.1.214. http://www.sciencedirect.com/science/article/pii/B9780857090560500078

    Chapter  Google Scholar 

  53. Karampatzakis A, Song CZ, Allsopp LP, Filloux A, Rice SA, Cohen Y, Wohland T, Török P (2017) Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. NPJ Biofilms Microbiomes 3:20. https://doi.org/10.1038/s41522-017-0028-z

    Article  CAS  Google Scholar 

  54. Kennedy BF, Wijesinghe P, Sampson DD (2017) The emergence of optical elastography in biomedicine. Nat Photonics 11:215–221. https://doi.org/10.1038/nphoton.2017.6. http://adsabs.harvard.edu/abs/2017NaPho..11..215K

    Article  CAS  Google Scholar 

  55. Key J, Palange AL, Gentile F, Aryal S, Stigliano C, Mascolo DD, Rosa ED, Cho M, Lee Y, Singh J, Decuzzi P (2015) Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9(12):11628–11641. https://doi.org/10.1021/acsnano.5b04866

    Article  CAS  Google Scholar 

  56. Kim JH, Yoo JJ (2018) Current developments and future perspectives of tissue engineering and regenerative medicine. In: Clinical regenerative medicine in urology. Springer, Singapore

    Chapter  Google Scholar 

  57. Klieber C, Hecksher T, Pezeril T, Torchinsky DH, Dyre JC, Nelson KA (2013) Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and dc704 studied by time-domain Brillouin scattering. J Chem Phys 138:12A544. https://doi.org/10.1063/1.4789948

    Article  CAS  Google Scholar 

  58. Koski KJ, Akhenblit P, McKiernan K, Yarger JL (2013) Non-invasive determination of the complete elastic moduli of spider silks. Nat Mater 12:262–267. https://doi.org/10.1038/nmat3549

    Article  CAS  Google Scholar 

  59. Lepesant JP, Powers L, Pershan PS (1978) Brillouin light scattering measurement of the elastic properties of aligned multilamella lipid samples. Proc Natl Acad Sci U S A 75:1792–1795

    Article  CAS  Google Scholar 

  60. Lim C, Zhou E, Quek S (2006) Mechanical models for living cells – a review. J Biomech 39(2):195–216. https://doi.org/10.1016/j.jbiomech.2004.12.008

    Article  CAS  Google Scholar 

  61. Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis – II: adhesion-influenced indentation of soft, elastic materials. J Biomech Eng 129(6):904. https://doi.org/10.1115/1.2800826

    Article  Google Scholar 

  62. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433

    Article  CAS  Google Scholar 

  63. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198. https://doi.org/10.1016/j.addr.2007.08.041

    Article  CAS  Google Scholar 

  64. Mandadapu KK, Govindjee S, Mofrad MRK (2008) On the cytoskeleton and soft glassy rheology. J Biomech 41:1467–1478. https://doi.org/10.1016/j.jbiomech.2008.02.014

    Article  Google Scholar 

  65. Mapelli L, Canale C, Pesci D, Averaimo S, Guizzardi F, Fortunati V, Falasca L, Piacentini M, Gliozzi A, Relini A, Mazzanti M, Jodice C (2012) Toxic effects of expanded ataxin-1 involve mechanical instability of the nuclear membrane. Biochim Biophys Acta 1822:906–917. https://doi.org/10.1016/j.bbadis.2012.01.016

    Article  CAS  Google Scholar 

  66. Maret G, Oldenbourg R, Winterling G, Dransfeld K, Rupprecht A (1979) Velocity of high frequency sound waves in oriented DNA fibres and films determined by Brillouin scattering. Colloid Polym Sci 257(10):1017–1020

    Article  CAS  Google Scholar 

  67. Masciovecchio C, Baldi G, Caponi S, Comez L, Di Fonzo S, Fioretto D, Fontana A, Gessini A, Santucci S, Sette F et al (2006) Evidence for a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys Rev Lett 97(3):035501

    Article  CAS  Google Scholar 

  68. Mattana S, Caponi S, Tamagnini F, Fioretto D, Palombo F (2017a) Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. J Innov Opt Health Sci 10:1742001. https://doi.org/10.1142/S1793545817420019

    Article  Google Scholar 

  69. Mattana S, Cardinali MA, Caponi S, Pierantoni DC, Corte L, Roscini L, Cardinali G, Fioretto D (2017b) High-contrast Brillouin and Raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. Biophys Chem 229:123–129

    Article  CAS  Google Scholar 

  70. Mattana S, Mattarelli M, Urbanelli L, Sagini K, Emiliani C, Dalla Serra M, Fioretto D, Caponi S (2018) Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques. Light: Sci Appl 7(2):17139

    Article  CAS  Google Scholar 

  71. Meng Z, Traverso AJ, Yakovlev VV (2014) Background clean-up in Brillouin microspectroscopy of scattering medium. Opt Express 22:5410–5415. https://doi.org/10.1364/OE.22.005410

    Article  CAS  Google Scholar 

  72. Meng Z, Bustamante Lopez SC, Meissner KE, Yakovlev VV (2016a) Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. J Biophotonics 9:201–207. https://doi.org/10.1002/jbio.201500163

    Article  CAS  Google Scholar 

  73. Meng Z, Traverso AJ, Ballmann CW, Troyanova-Wood MA, Yakovlev VV (2016b) Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv Opt Photon 8(2):300–327

    Article  Google Scholar 

  74. Monaco G, Caponi S, di Leonardo R, Fioretto D, Ruocco G (2000) Intramolecular origin of the fast relaxations observed in the Brillouin light scattering spectra of molecular glass formers. Phys Rev E 62:R7595–R7598. https://doi.org/10.1103/PhysRevE.62.R7595. http://adsabs.harvard.edu/abs/2000PhRvE..62.7595M

    Article  CAS  Google Scholar 

  75. Murphy SV, Atala A (2013) Organ engineering–combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays 35:163–172. https://doi.org/10.1002/bies.201200062

    Article  CAS  Google Scholar 

  76. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cellladen microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544

    Article  CAS  Google Scholar 

  77. O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-gag scaffolds. Biomaterials 25:1077–1086

    Article  CAS  Google Scholar 

  78. Offeddu GS, Ashworth JC, Cameron RE, Oyen ML (2015) Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. J Mech Behav Biomed Mater 42:19–25. https://doi.org/10.1016/j.jmbbm.2014.10.015

    Article  CAS  Google Scholar 

  79. Oh YJ, Sekot G, Duman M, Chtcheglova L, Messner P, Peterlik H, Schäffer C, Hinterdorfer P (2013) Characterizing the s-layer structure and anti-s-layer antibody recognition on intact tannerella forsythia cells by scanning probe microscopy and small angle x-ray scattering. J Mol Recognit 26:542–549. https://doi.org/10.1002/jmr.2298

    Article  CAS  Google Scholar 

  80. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20

    Article  CAS  Google Scholar 

  81. Oropesa-Nuñez R, Keshavan S, Dante S, Diaspro A, Mannini B, Capitini C, Cecchi C, Stefani M, Chiti F, Canale C (2018) Toxic hypf-n oligomers selectively bind the plasma membrane to impair cell adhesion capability. Biophys J 114:1357–1367. https://doi.org/10.1016/j.bpj.2018.02.003

    Article  CAS  Google Scholar 

  82. Oyen M (2011) Nanoindentation of biological and biomimetic materials. Exp Tech 37(1):73–87. https://doi.org/10.1111/j.1747-1567.2011.00716.x

    Article  Google Scholar 

  83. Palomba R, Palange AL, Rizzuti IF, Ferreira M, Cervadoro A, Barbato MG, Canale C, Decuzzi P (2018) Modulating phagocytic cell sequestration by tailoring nanoconstruct softness. ACS Nano 12:1433–1444. https://doi.org/10.1021/acsnano.7b07797

    Article  CAS  Google Scholar 

  84. Palombo F, Madami M, Stone N, Fioretto D (2014a) Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy. Analyst 139:729–733. https://doi.org/10.1039/c3an02168h

    Article  CAS  Google Scholar 

  85. Palombo F, Winlove CP, Edginton RS, Green E, Stone N, Caponi S, Madami M, Fioretto D (2014b) Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J R Soc Interface 11:20140739. https://doi.org/10.1098/rsif.2014.0739

    Article  CAS  Google Scholar 

  86. Pastorino L, Dellacasa E, Scaglione S, Giulianelli M, Sbrana F, Vassalli M, Ruggiero C (2014) Oriented collagen nanocoatings for tissue engineering. Colloids Surf B: Biointerfaces 114:372–378

    Article  CAS  Google Scholar 

  87. Pawelec KM, Husmann A, Best SM, Cameron RE (2014) Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Mater Sci Eng C Mater Biol Appl 37:141–147. https://doi.org/10.1016/j.msec.2014.01.009

    Article  CAS  Google Scholar 

  88. Perticaroli S, Nickels JD, Ehlers G, Sokolov AP (2014) Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys J 106(12):2667–2674

    Article  CAS  Google Scholar 

  89. Pukhlyakova E, Aman AJ, Elsayad K, Technau U (2018) β-Catenin-dependent mechanotrans-duction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci U S A 115:6231–6236. https://doi.org/10.1073/pnas.1713682115

    Article  CAS  Google Scholar 

  90. Qi C, Yan X, Huang C, Melerzanov A, Du Y (2015) Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 6:638–653. https://doi.org/10.1007/s13238-015-0179-8

    Article  CAS  Google Scholar 

  91. Randall JT, Vaughan JM (1979) Brillouin scattering in systems of biological significance. Philos Trans R Soc Lond A 293(1402):341–348

    Article  CAS  Google Scholar 

  92. Rezende CA, Lee LT, Galembeck F (2009) Surface mechanical properties of thin polymer films investigated by AFM in pulsed force mode. Langmuir 25:9938–9946. https://doi.org/10.1021/la9010949

    Article  CAS  Google Scholar 

  93. Rigato A, Miyagi A, Scheuring S, Rico F (2017) High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys 13:771–775. https://doi.org/10.1038/nphys4104

    Article  CAS  Google Scholar 

  94. Sadati M, Nourhani A, Fredberg JJ, Taheri Qazvini N (2014) Glass-like dynamics in the cell and in cellular collectives. Wiley Interdiscip Rev Syst Biol Med 6:137–149. https://doi.org/10.1002/wsbm.1258

    Article  CAS  Google Scholar 

  95. Salem AK, Stevens R, Pearson RG, Davies MC, Tendler SJB, Roberts CJ, Williams PM, Shakesheff KM (2002) Interactions of 3t3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61:212–217. https://doi.org/10.1002/jbm.10195

    Article  CAS  Google Scholar 

  96. Sassi P, Caponi S, Ricci M, Morresi A, Oldenhof H, Wolkers WF, Fioretto D (2015) Infraredversuslight scattering techniques to monitor the gel to liquid crystal phase transition in lipid membranes. J Raman Spectrosc 46:644–651. https://doi.org/10.1002/jrs.4702. http://adsabs.harvard.edu/abs/2015JRSp...46..644S

    Article  CAS  Google Scholar 

  97. Sbrana F, Fotia C, Bracalello A, Baldini N, Marletta G, Ciapetti G, Bochicchio B, Vassalli M (2012) Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture. Bioinspir Biomim 7(4):046007

    Article  CAS  Google Scholar 

  98. Scarcelli G, Yun SH (2007) Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics 2:39–43. https://doi.org/10.1038/nphoton.2007.250

    Article  Google Scholar 

  99. Scarcelli G, Yun SH (2011) Multistage vipa etalons for high-extinction parallel Brillouin spectroscopy. Opt Express 19(10):913–10922. https://doi.org/10.1364/OE.19.010913

    Article  Google Scholar 

  100. Scarcelli G, Yun SH (2012) In vivo Brillouin optical microscopy of the human eye. Opt Express 20:9197–9202. https://doi.org/10.1364/OE.20.009197

    Article  Google Scholar 

  101. Scarcelli G, Kim P, Yun SH (2011) In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J 101:1539–1545. https://doi.org/10.1016/j.bpj.2011.08.008

    Article  CAS  Google Scholar 

  102. Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ, Kamm RD, Yun SH (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12:1132–1134. https://doi.org/10.1038/nmeth.3616

    Article  CAS  Google Scholar 

  103. Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C et al (2017) High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy. Phys Rev X 7(3):031015

    Google Scholar 

  104. Schlüßler R, Möllmert S, Abuhattum S, Cojoc G, Müller P, Kim K, Möckel C, Zimmermann C, Czarske J, Guck J (2018) Mechanical mapping of spinal cord growth and repair in living Zebrafish larvae by Brillouin imaging. Biophys J 115(5):911–923

    Article  CAS  Google Scholar 

  105. Schneider D, Gomopoulos N, Koh CY, Papadopoulos P, Kremer F, Thomas EL, Fytas G (2016) Nonlinear control of high-frequency phonons in spider silk. Nat Mater 15(10):1079

    Article  CAS  Google Scholar 

  106. Schwarz US, Gardel ML (2012) United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. J Cell Sci 125:3051. https://doi.org/10.1242/jcs.093716. http://jcs.biologists.org/content/early/2012/07/10/jcs.093716

    Article  CAS  Google Scholar 

  107. Scott ON, Begley MR, Komaragiri U, Mackin TJ (2004) Indentation of freestanding circular elastomer films using spherical indenters. Acta Mater 52:4877–4885. https://doi.org/10.1016/j.actamat.2004.06.043

    Article  CAS  Google Scholar 

  108. Sebastian T, Schultheiss K, Obry B, Hillebrands B, Schultheiss H, Obry B (2015) Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Front Phys 3:35. https://doi.org/10.3389/fphy.2015.00035. http://adsabs.harvard.edu/abs/2015FrP..... 3...35S

    Article  Google Scholar 

  109. Smith L, Ma P (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B: Biointerfaces 39(3):125–131

    Article  CAS  Google Scholar 

  110. Smolyakov G, Pruvost S, Cardoso L, Alonso B, Belamie E, Duchet-Rumeau J (2016) AFM PeakForce QNM mode: evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites. Carbohydr Polym 151:373–380. https://doi.org/10.1016/j.carbpol.2016.05.042

    Article  CAS  Google Scholar 

  111. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57. https://doi.org/10.1016/0020-7225(65)90019-4

    Article  Google Scholar 

  112. Solano I, Parisse P, Gramazio F, Ianeselli L, Medagli B, Cavalleri O, Casalis L, Canepa M (2017) Atomic force microscopy and spectroscopic ellipsometry combined analysis of small ubiquitin-like modifier adsorption on functional monolayers. Appl Surf Sci 421:722–727. https://doi.org/10.1016/j.apsusc.2016.10.195

    Article  CAS  Google Scholar 

  113. Sweers K, van der Werf K, Bennink M, Subramaniam V (2011) Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and peakforce QNM. Nanoscale Res Lett 6(1):270. https://doi.org/10.1186/1556-276x-6-270

    Article  Google Scholar 

  114. Tomar V, Qu T, Dubey DK, Verma D, Zhang Y (2015) Introduction. In: Multiscale characterization of biological systems. New York: Springer-Verlag https://doi.org/10.1007/978-1-4939-3453-9

    Book  Google Scholar 

  115. Traverso AJ, Thompson JV, Steelman ZA, Meng Z, Scully MO, Yakovlev VV (2015) Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging. Anal Chem 87:7519–7523. https://doi.org/10.1021/acs.analchem.5b02104

    Article  CAS  Google Scholar 

  116. Vacanti CA (2007) The history of tissue engineering. J Cell Mol Med 10(3):569–576. https://doi.org/10.1111/j.1582-4934.2006.tb00421.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1582-4934.2006.tb00421.x

    Article  Google Scholar 

  117. Vacher R, Boyer L (1972) Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys Rev B 6(2):639

    Article  CAS  Google Scholar 

  118. Vacher Sussner H, Schmidt M, Hunklinger S (1980) High resolution studies of Brillouin scattering in amorphous materials, Chap. 13. In: Maris HJ (ed) Phonon scattering in condensed matter. Springer, Boston, pp 61–64

    Chapter  Google Scholar 

  119. Vacher R, Pelous J, Courtens E (1997) Mean free path of high-frequency acoustic excitations in glasses with application to vitreous silica. Phys Rev B 56(2):R481

    Article  CAS  Google Scholar 

  120. Vassalli M, Sbrana F, Laurita A, Papi M, Bloise N, Visai L, Bochicchio B (2013) Biological and structural characterization of a naturally inspired material engineered from elastin as a candidate for tissue engineering applications. Langmuir 29(15):898–15906. https://doi.org/10.1021/la403311x

    Article  CAS  Google Scholar 

  121. Vaughan J, Randall J (1980) Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284(5755):489–491

    Article  CAS  Google Scholar 

  122. Vezenov DV, Noy A, Rozsnyai LF, Lieber CM (1997) Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J Am Chem Soc 119(8):2006–2015

    Article  Google Scholar 

  123. Vinckier A, Semenza G (1998) Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett 430(1–2):12–16. https://doi.org/10.1016/s0014-5793(98)00592-4

    Article  CAS  Google Scholar 

  124. Wake MC, Patrick CW, Mikos AG (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 3:339–343

    Article  CAS  Google Scholar 

  125. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75

    Article  CAS  Google Scholar 

  126. Welzel PB, Friedrichs J, Grimmer M, Vogler S, Freudenberg U, Werner C (2014) Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Adv Healthc Mater 3(11):1849–1853

    Article  CAS  Google Scholar 

  127. Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987. https://doi.org/10.1038/nmat4051

    Article  CAS  Google Scholar 

  128. Wolff L, Fernández P, Kroy K (2012) Resolving the stiffening-softening paradox in cell mechanics. PLoS One 7:e40063. https://doi.org/10.1371/journal.pone.0040063

    Article  CAS  Google Scholar 

  129. Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118

    Article  CAS  Google Scholar 

  130. Xu J, Läuger K, Dransfeld K, Wilson I (1994) Thermal sensors for investigation of heat transfer in scanning probe microscopy. Rev Sci Instrum 65(7):2262–2266

    Article  CAS  Google Scholar 

  131. Yun SH, Chernyak D (2018) Brillouin microscopy: assessing ocular tissue biomechanics. Curr Opin Ophthalmol 29:299–305. https://doi.org/10.1097/ICU.0000000000000489

    Article  Google Scholar 

  132. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572. https://doi.org/10.1089/107632701753213183

    Article  CAS  Google Scholar 

  133. Zwanzig R, Mountain RD (1965) High-frequency elastic moduli of simple fluids. J Chem Phys 43(12):4464–4471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Vassalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caponi, S., Canale, C., Cavalleri, O., Vassalli, M. (2019). Characterization Tools for Mechanical Probing of Biomimetic Materials. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59596-1_2

Download citation

Publish with us

Policies and ethics