Advertisement

Performance Optimization in IoT-Based Next-Generation Wireless Sensor Networks

  • Muzammil BehzadEmail author
  • Manal Abdullah
  • Muhammad Talal Hassan
  • Yao Ge
  • Mahmood Ashraf Khan
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11610)

Abstract

In this paper, we propose a novel framework for performance optimization in Internet of Things (IoT)-based next-generation wireless sensor networks. In particular, a computationally-convenient system is presented to combat two major research problems in sensor networks. First is the conventionally-tackled resource optimization problem which triggers the drainage of battery at a faster rate within a network. Such drainage promotes inefficient resource usage thereby causing sudden death of the network. The second main bottleneck for such networks is the data degradation. This is because the nodes in such networks communicate via a wireless channel, where the inevitable presence of noise corrupts the data making it unsuitable for practical applications. Therefore, we present a layer-adaptive method via 3-tier communication mechanism to ensure the efficient use of resources. This is supported with a mathematical coverage model that deals with the formation of coverage holes. We also present a transform-domain based robust algorithm to effectively remove the unwanted components from the data. Our proposed framework offers a handy algorithm that enjoys desirable complexity for real-time applications as shown by the extensive simulation results.

Keywords

Coverage holes Denoising Energy efficiency Energy holes Sparse representations Wireless sensor networks 

References

  1. 1.
    Sheng, Z., Mahapatra, C., Zhu, C., Leung, V.C.M.: Recent advances in industrial wireless sensor networks toward efficient management in IoT. IEEE Access 3, 622–637 (2015)CrossRefGoogle Scholar
  2. 2.
    Mois, G., Folea, S., Sanislav, T.: Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans. Instrum. Meas. 66(8), 2056–2064 (2017)CrossRefGoogle Scholar
  3. 3.
    Umar, A., et al.: On enhancing network reliability and throughput for critical-range based applications in UWSNs. Procedia Comput. Sci. 34, 196–203 (2014)CrossRefGoogle Scholar
  4. 4.
    Grumazescu, C., Vluaduţua, V.A., Subaşu, G.: WSN solutions for communication challenges in military live simulation environments. In: International Conference on Communications, pp. 319–322 (2016)Google Scholar
  5. 5.
    Salem, O., Liu, Y., Mehaoua, A.: Anomaly detection in medical WSNs using enclosing ellipse and chi-square distance. In: IEEE International Conference on Communications (ICC), pp. 3658–3663, June 2014Google Scholar
  6. 6.
    Jha, S.S., Nair, S.B.: On a multi-agent distributed asynchronous intelligence-sharing and learning framework. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence XVIII. LNCS, vol. 9240, pp. 166–200. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48145-5_9CrossRefGoogle Scholar
  7. 7.
    Behzad, M., et al.: Design and development of a low cost ubiquitous tracking system. Procedia Comput. Sci. 34, 220–227 (2014)CrossRefGoogle Scholar
  8. 8.
    Sandhu, M.M., Akbar, M., Behzad, M., Javaid, N., Khan, Z.A., Qasim, U.: Mobility model for WBANs. In: 2014 Ninth International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 155–160. IEEE (2014)Google Scholar
  9. 9.
    Sandhu, M.M., Akbar, M., Behzad, M., Javaid, N., Khan, Z.A., Qasim, U.: REEC: reliable energy efficient critical data routing in wireless body area networks. In: 2014 Ninth International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 446–451. IEEE (2014)Google Scholar
  10. 10.
    Behzad, M.: M-BEHZAD: minimum distance based energy efficiency using hemisphere zoning with advanced divide-and-rule scheme for wireless sensor networks. arXiv preprint arXiv:1804.00898 (2018)
  11. 11.
    Behzad, M., Adnan, N., Merchant, S.A.: Technology-embedded hybrid learning (2018)Google Scholar
  12. 12.
    Sibeko, N., Mudali, P., Oki, O., Alaba, A.: Performance evaluation of routing protocols in uniform and normal node distributions using inter-mesh wireless networks. In: World Symposium on Computer Networks and Information Security (WSCNIS), pp. 1–6, September 2015Google Scholar
  13. 13.
    Heinzelman, W.B.: Application-specific protocol architectures for wireless networks. Ph.D. thesis, Massachusetts Institute of Technology (2000)Google Scholar
  14. 14.
    Behzad, M., et al.: TSDDR: threshold sensitive density controlled divide and rule routing protocol for wireless sensor networks. In: Ninth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 78–83, November 2014Google Scholar
  15. 15.
    Saleem, F., et al.: IDDR: improved density controlled divide-and-rule scheme for energy efficient routing in wireless sensor networks. Procedia Comput. Sci. 34, 212–219 (2014)CrossRefGoogle Scholar
  16. 16.
    Behzad, M., Ge, Y.: Performance optimization in wireless sensor networks: a novel collaborative compressed sensing approach. In: IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 749–756, March 2017Google Scholar
  17. 17.
    Behzad, M., Javaid, M.S., Parahca, M.A., Khan, S.: Distributed PCA and consensus based energy efficient routing protocol for WSNs. J. Inf. Sci. Eng. 33(5), 1267–1283 (2017)Google Scholar
  18. 18.
    Behzad, M., Abdullah, M., Hassan, M.T., Ge, Y., Khan, M.A.: Layer-adaptive communication and collaborative transformed-domain representations to optimize performance in next-generation WSNs. In: IEEE 32nd International Conference on Advanced Information Networking and Applications, pp. 101–108 (2018)Google Scholar
  19. 19.
    Jurenoks, A., Novickis, L.: Analysis of wireless sensor network structure and life time affecting factors. In: Communication and Information Technologies (KIT), pp. 1–6, October 2017Google Scholar
  20. 20.
    Heinzelman, W.B., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, January 2000Google Scholar
  21. 21.
    Manjeshwar, A., Agrawal, D.P.: TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In: Proceedings 15th International Parallel and Distributed Processing Symposium (IPDPS), pp. 2009–2015, April 2001Google Scholar
  22. 22.
    Smaragdakis, G., Matta, I., Bestavros, A.: SEP: a stable election protocol for clustered heterogeneous wireless sensor networks. Technical report, Boston University Computer Science Department (2004)Google Scholar
  23. 23.
    Qing, L., Zhu, Q., Wang, M.: Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Comput. Commun. 29(12), 2230–2237 (2006)CrossRefGoogle Scholar
  24. 24.
    Khadivi, A., Shiva, M.: FTPASC: a fault tolerant power aware protocol with static clustering for wireless sensor networks. In: IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 397–401, June 2006)Google Scholar
  25. 25.
    Azam, I., et al.: SEEC: sparsity-aware energy efficient clustering protocol for underwater wireless sensor networks. In: IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pp. 352–361, March 2016Google Scholar
  26. 26.
    Bajaber, F., Awan, I.: Centralized dynamic clustering for wireless sensor network. In: International Conference on Advanced Information Networking and Applications (AINA) Workshops, pp. 193–198 (2009)Google Scholar
  27. 27.
    Tomar, G.S., Verma, S.: Dynamic multi-level hierarchal clustering approach for wireless sensor networks. In: 11th International Conference on Computer Modelling and Simulation, pp. 563–567, March 2009Google Scholar
  28. 28.
    Naeem, M.K., Patwary, M., Abdel-Maguid, M.: Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access 5, 12318–12337 (2017)CrossRefGoogle Scholar
  29. 29.
    Jia, D., Zhu, H., Zou, S., Hu, P.: Dynamic cluster head selection method for wireless sensor network. IEEE Sens. J. 16(8), 2746–2754 (2016)CrossRefGoogle Scholar
  30. 30.
    Ahmad, A., Latif, K., Javaidl, N., Khan, Z.A., Qasim, U.: Density controlled divide-and-rule scheme for energy efficient routing in wireless sensor networks. In: 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4, May 2013Google Scholar
  31. 31.
    Mammu, A.S.K., Sharma, A., Hernandez-Jayo, U., Sainz, N.: A novel cluster-based energy efficient routing in wireless sensor networks. In: IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 41–47, March 2013Google Scholar
  32. 32.
    Behzad, M., Masood, M., Ballal, T., Shadaydeh, M., Al-Naffouri, T.Y.: Image denoising via collaborative support-agnostic recovery. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1343–1347, March 2017Google Scholar
  33. 33.
    Krause, A.F., Harischandra, N., Dürr, V.: Shape recognition through tactile contour tracing. In: Nguyen, N.T., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) Transactions on Computational Collective Intelligence XX. LNCS, vol. 9420, pp. 54–77. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27543-7_3CrossRefGoogle Scholar
  34. 34.
    He, K., Sun, J.: Image completion approaches using the statistics of similar patches. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2423–2435 (2014)CrossRefGoogle Scholar
  35. 35.
    Liu, H., Xiong, R., Ma, S., Fan, X., Gao, W.: Gradient based image/video softcast with grouped-patch collaborative reconstruction. In: IEEE Visual Communications and Image Processing Conference, pp. 141–144, December 2014Google Scholar
  36. 36.
    Wang, M., Yu, J., Sun, W.: Group-based hyperspectral image denoising using low rank representation. In: IEEE International Conference on Image Processing (ICIP), pp. 1623–1627, September 2015Google Scholar
  37. 37.
    Yang, W., Liu, J., Yang, S., Quo, Z.: Image super-resolution via nonlocal similarity and group structured sparse representation. In: IEEE Visual Communications and Image Processing, pp. 1–4, December 2015Google Scholar
  38. 38.
    Bahrami, K., Shi, F., Zong, X., Shin, H.W., An, H., Shen, D.: Reconstruction of 7T-like images from 3T MRI. IEEE Trans. Med. Imaging 35(9), 2085–2097 (2016)CrossRefGoogle Scholar
  39. 39.
    Behzad, M.: Image denoising via collaborative dual-domain patch filtering. arXiv preprint arXiv:1805.00472 (2018)
  40. 40.
    Van Hulle, M.M.: Self-organizing maps. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 585–622. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4419-1428-6CrossRefGoogle Scholar
  41. 41.
    Gersho, A.: On the structure of vector quantizers. IEEE Trans. Inf. Theory 28(2), 157–166 (1982)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Höppner, F.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. Wiley, New York (1999)zbMATHGoogle Scholar
  43. 43.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)CrossRefGoogle Scholar
  44. 44.
    Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65 (2005)Google Scholar
  45. 45.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Liu, G., Zhong, H., Jiao, L.: Comparing noisy patches for image denoising: a double noise similarity model. IEEE Trans. Image Process. 24(3), 862–872 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Panetta, K., Bao, L., Agaian, S.: Sequence-to-sequence similarity-based filter for image denoising. IEEE Sens. J. 16(11), 4380–4388 (2016)CrossRefGoogle Scholar
  48. 48.
    Behzad, M., Abdullah, M., Hassan, M.T., Ge, Y., Khan, M.A.: Layer-adaptive communication and collaborative transformed-domain representations for performance optimization in wsns. arXiv preprint arXiv:1712.04259 (2017)
  49. 49.
    Behzad, M., Abdullah, M., Hassan, M.T., Ge, Y., Khan, M.A.: Toward performance optimization in IoT-based next-Gen wireless sensor networks. arXiv preprint arXiv:1806.09980 (2018)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of OuluOuluFinland
  2. 2.COMSATS University IslamabadIslamabadPakistan
  3. 3.King Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  4. 4.The Chinese University of Hong KongShatinHong Kong

Personalised recommendations